The necessity of sigma-finiteness in the radon-nikodym theorem

Wayne C. Bell, John W Hagood

Research output: Contribution to journalArticle

Abstract

This note contains characterizations of those sigma-fields for which sigma-finiteness is a necessary condition in the Radon-Nikodym Theorem.

Original languageEnglish (US)
Pages (from-to)99-101
Number of pages3
JournalMathematika
Volume28
Issue number1
DOIs
StatePublished - 1981
Externally publishedYes

Fingerprint

Finiteness
Necessary Conditions
Theorem
Necessity

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

The necessity of sigma-finiteness in the radon-nikodym theorem. / Bell, Wayne C.; Hagood, John W.

In: Mathematika, Vol. 28, No. 1, 1981, p. 99-101.

Research output: Contribution to journalArticle

Bell, Wayne C. ; Hagood, John W. / The necessity of sigma-finiteness in the radon-nikodym theorem. In: Mathematika. 1981 ; Vol. 28, No. 1. pp. 99-101.
@article{572c1ef4422d4164be7981c3f7f2754d,
title = "The necessity of sigma-finiteness in the radon-nikodym theorem",
abstract = "This note contains characterizations of those sigma-fields for which sigma-finiteness is a necessary condition in the Radon-Nikodym Theorem.",
author = "Bell, {Wayne C.} and Hagood, {John W}",
year = "1981",
doi = "10.1112/S0025579300015412",
language = "English (US)",
volume = "28",
pages = "99--101",
journal = "Mathematika",
issn = "0025-5793",
publisher = "University College London",
number = "1",

}

TY - JOUR

T1 - The necessity of sigma-finiteness in the radon-nikodym theorem

AU - Bell, Wayne C.

AU - Hagood, John W

PY - 1981

Y1 - 1981

N2 - This note contains characterizations of those sigma-fields for which sigma-finiteness is a necessary condition in the Radon-Nikodym Theorem.

AB - This note contains characterizations of those sigma-fields for which sigma-finiteness is a necessary condition in the Radon-Nikodym Theorem.

UR - http://www.scopus.com/inward/record.url?scp=84971160389&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971160389&partnerID=8YFLogxK

U2 - 10.1112/S0025579300015412

DO - 10.1112/S0025579300015412

M3 - Article

VL - 28

SP - 99

EP - 101

JO - Mathematika

JF - Mathematika

SN - 0025-5793

IS - 1

ER -