239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS

Solution and laser ablation measurements

James V. Cizdziel, Michael E Ketterer, Dennis Farmer, Scott H. Faller, Vernon F. Hodge

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H 3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry "planchette" sources. The best ablation results were obtained using a large spot size (200 μm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 μm s-1); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10% of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between 239+240Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038-0.132 and 0.00034-0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu∈=∈0.013 [240Pu/239Pu] - 0.0001; r 2∈=∈0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified 239+240Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. 239+240Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.

Original languageEnglish (US)
Pages (from-to)521-530
Number of pages10
JournalAnalytical and Bioanalytical Chemistry
Volume390
Issue number2
DOIs
StatePublished - Jan 2008

Fingerprint

Plutonium
Laser Therapy
Laser ablation
Soil
Soils
Inductively coupled plasma mass spectrometry
Fallout
Mass Spectrometry
Spectrometry
Spectrum Analysis
Dissolution
Upper atmosphere
Chromatography
Dust
Atoms
Ablation
Static Electricity
Refractory materials
Leaching
Electrostatics

Keywords

  • Attic dust
  • ICPMS
  • Laser ablation
  • Nevada Test Site
  • Plutonium isotopes
  • Stratospheric fallout

ASJC Scopus subject areas

  • Analytical Chemistry
  • Clinical Biochemistry

Cite this

239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS : Solution and laser ablation measurements. / Cizdziel, James V.; Ketterer, Michael E; Farmer, Dennis; Faller, Scott H.; Hodge, Vernon F.

In: Analytical and Bioanalytical Chemistry, Vol. 390, No. 2, 01.2008, p. 521-530.

Research output: Contribution to journalArticle

Cizdziel, James V. ; Ketterer, Michael E ; Farmer, Dennis ; Faller, Scott H. ; Hodge, Vernon F. / 239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS : Solution and laser ablation measurements. In: Analytical and Bioanalytical Chemistry. 2008 ; Vol. 390, No. 2. pp. 521-530.
@article{bb43fba8b46e4349b6b4a41092883745,
title = "239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS: Solution and laser ablation measurements",
abstract = "Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H 3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry {"}planchette{"} sources. The best ablation results were obtained using a large spot size (200 μm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 μm s-1); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10{\%} of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between 239+240Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038-0.132 and 0.00034-0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu∈=∈0.013 [240Pu/239Pu] - 0.0001; r 2∈=∈0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified 239+240Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. 239+240Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.",
keywords = "Attic dust, ICPMS, Laser ablation, Nevada Test Site, Plutonium isotopes, Stratospheric fallout",
author = "Cizdziel, {James V.} and Ketterer, {Michael E} and Dennis Farmer and Faller, {Scott H.} and Hodge, {Vernon F.}",
year = "2008",
month = "1",
doi = "10.1007/s00216-007-1741-x",
language = "English (US)",
volume = "390",
pages = "521--530",
journal = "Fresenius Zeitschrift fur Analytische Chemie",
issn = "0016-1152",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - 239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS

T2 - Solution and laser ablation measurements

AU - Cizdziel, James V.

AU - Ketterer, Michael E

AU - Farmer, Dennis

AU - Faller, Scott H.

AU - Hodge, Vernon F.

PY - 2008/1

Y1 - 2008/1

N2 - Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H 3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry "planchette" sources. The best ablation results were obtained using a large spot size (200 μm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 μm s-1); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10% of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between 239+240Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038-0.132 and 0.00034-0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu∈=∈0.013 [240Pu/239Pu] - 0.0001; r 2∈=∈0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified 239+240Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. 239+240Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.

AB - Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H 3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry "planchette" sources. The best ablation results were obtained using a large spot size (200 μm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 μm s-1); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10% of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between 239+240Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038-0.132 and 0.00034-0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu∈=∈0.013 [240Pu/239Pu] - 0.0001; r 2∈=∈0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified 239+240Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. 239+240Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.

KW - Attic dust

KW - ICPMS

KW - Laser ablation

KW - Nevada Test Site

KW - Plutonium isotopes

KW - Stratospheric fallout

UR - http://www.scopus.com/inward/record.url?scp=38549110807&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38549110807&partnerID=8YFLogxK

U2 - 10.1007/s00216-007-1741-x

DO - 10.1007/s00216-007-1741-x

M3 - Article

VL - 390

SP - 521

EP - 530

JO - Fresenius Zeitschrift fur Analytische Chemie

JF - Fresenius Zeitschrift fur Analytische Chemie

SN - 0016-1152

IS - 2

ER -