Structural considerations in designing magnetorheological fluid mounts

The Nguyen, Constantin Ciocanel, Mohammad Elahinia

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Modern vehicles have been increasingly equipped with advanced technologies such as hybrid and cylinder-on-demand to enhance fuel efficiency. These technologies also come with vibration problems due to the switching between the power sources or the variation of the number of active cylinders. To mitigate these vibrations, a large variety of vibration isolators have been proposed, ranging from passive to active isolators. Semi-active mounts are often preferred to other solutions because of their overall low power requirement in operation as well as relatively simpler configurations. Among the semi-active categories, the magnetorheological fluid (MRF) mounts have been proven to be a viable solution for modern vehicle vibration isolation. These mounts can change their stiffness and damping characteristic without involving moving parts, by controlling the yield stress of the MRF housed inside the mount by means of magnetic field. This study looked into several innovative designs for MRF mounts. The characteristics of the mount depend significantly on the compliances of the rubber, the number and arrangement of the fluid chambers and the number of flow passages connecting the chambers. These parameters provide the designers with various options to design the mounts to function in various conditions and over a wide range of frequencies. Different values of the aforementioned parameters were selected to form specific designs with certain characteristics. Mathematical models have been developed for each design and MATLAB/Simulink was used to simulate the response of each mount to certain excitations. As the hydraulic and magnetorheological (MR) effects are dominant in the mount, the elastomer behavior is considered linear. A discussion of the advantages and disadvantages of each design, based on the simulated response, is presented. The outcomes of this study can be a useful reference for MRF mount designers and leads to the development of a general MRF mount design methodology.

Original languageEnglish (US)
Title of host publicationActive and Passive Smart Structures and Integrated Systems 2010
EditionPART 1
DOIs
StatePublished - Jun 18 2010
EventActive and Passive Smart Structures and Integrated Systems 2010 - San Diego, CA, United States
Duration: Mar 8 2010Mar 11 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
NumberPART 1
Volume7643
ISSN (Print)0277-786X

Other

OtherActive and Passive Smart Structures and Integrated Systems 2010
CountryUnited States
CitySan Diego, CA
Period3/8/103/11/10

    Fingerprint

Keywords

  • Magnetorheological mounts
  • Semi-active vibration isolation
  • Smart materials

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Nguyen, T., Ciocanel, C., & Elahinia, M. (2010). Structural considerations in designing magnetorheological fluid mounts. In Active and Passive Smart Structures and Integrated Systems 2010 (PART 1 ed.). [764314] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 7643, No. PART 1). https://doi.org/10.1117/12.848908