Silicic lunar volcanism

Testing the crustal melting model

Amber L. Gullikson, Justin J. Hagerty, Mary Reid, Jennifer F. Rapp, David S. Draper

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Lunar silicic rocks were first identified by granitic fragments found in samples brought to Earth by the Apollo missions, followed by the discovery of silicic domes on the lunar surface through remote sensing. Although these silicic lithologies are thought to make up a small portion of the lunar crust, their presence indicates that lunar crustal evolution is more complex than originally thought. Models currently used to describe the formation of silicic lithologies on the Moon include in situ differentiation of a magma, magma differentiation with silicate liquid immiscibility, and partial melting of the crust. This study focuses on testing a crustal melting model through partial melting experiments on compositions representing lithologies spatially associated with the silicic domes. The experiments were guided by the results of modeling melting temperatures and residual melt compositions of possible protoliths for lunar silicic rocks using the thermodynamic modeling software, rhyolite-MELTS. Rhyolite-MELTS simulations predict liquidus temperatures of 950-1040 °C for lunar granites under anhydrous conditions, which guided the temperature range for the experiments. Monzogabbro, alkali gabbronorite, and KREEP basalt were identified as potential protoliths due to their ages, locations on the Moon (i.e., located near observed silicic domes), chemically evolved compositions, and the results from rhyolite-MELTS modeling. Partial melting experiments, using mixtures of reagent grade oxide powders representing bulk rock compositions of these rock types, were carried out at atmospheric pressure over the temperature range of 900-1100 °C. Because all lunar granite samples and remotely sensed domes have an elevated abundance of Th, some of the mixtures were doped with Th to observe its partitioning behavior. Run products show that at temperatures of 1050 and 1100 °C, melts of the three protoliths are not silicic in nature (i.e., they have <63 wt% SiO2). By 1000 °C, melts of both monzogabbro and alkali gabbronorite approach the composition of granite, but are also characterized by immiscible Si-rich and Fe-rich liquids. Furthermore, Th strongly partitions into the Fe-rich, and not the Si-rich glass in all experimental runs. Our work provides important constraints on the mechanism of silicic melt formation on the Moon. The observed high-Th content of lunar granite is difficult to explain by silicate liquid immiscibility, because through this process, Th is not fractionated into the Si-rich phase. Results of our experiments and modeling suggests that silicic lunar rocks could be produced from monzogabbro and alkali gabbronorite protoliths by partial melting at T < 1000 °C. Additionally, we speculate that at higher pressures (P ≥ 0.005 GPa), the observed immiscibility in the partial melting experiments would be suppressed.

Original languageEnglish (US)
Pages (from-to)2312-2321
Number of pages10
JournalAmerican Mineralogist
Volume101
Issue number10
DOIs
StatePublished - Oct 1 2016

Fingerprint

volcanism
Melting
melting
partial melting
Domes
protolith
lunar rocks
Rocks
immiscibility
dome
Lithology
domes
Moon
Alkalies
Testing
rhyolite
melt
lithology
granite
moon

Keywords

  • crustal melting
  • Moon
  • partial melting experiments
  • silicate liquid immiscibility
  • silicic volcanism

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology

Cite this

Gullikson, A. L., Hagerty, J. J., Reid, M., Rapp, J. F., & Draper, D. S. (2016). Silicic lunar volcanism: Testing the crustal melting model. American Mineralogist, 101(10), 2312-2321. https://doi.org/10.2138/am-2016-5619

Silicic lunar volcanism : Testing the crustal melting model. / Gullikson, Amber L.; Hagerty, Justin J.; Reid, Mary; Rapp, Jennifer F.; Draper, David S.

In: American Mineralogist, Vol. 101, No. 10, 01.10.2016, p. 2312-2321.

Research output: Contribution to journalArticle

Gullikson, AL, Hagerty, JJ, Reid, M, Rapp, JF & Draper, DS 2016, 'Silicic lunar volcanism: Testing the crustal melting model', American Mineralogist, vol. 101, no. 10, pp. 2312-2321. https://doi.org/10.2138/am-2016-5619
Gullikson, Amber L. ; Hagerty, Justin J. ; Reid, Mary ; Rapp, Jennifer F. ; Draper, David S. / Silicic lunar volcanism : Testing the crustal melting model. In: American Mineralogist. 2016 ; Vol. 101, No. 10. pp. 2312-2321.
@article{b8856be4cb9a4d89ae961037068712bd,
title = "Silicic lunar volcanism: Testing the crustal melting model",
abstract = "Lunar silicic rocks were first identified by granitic fragments found in samples brought to Earth by the Apollo missions, followed by the discovery of silicic domes on the lunar surface through remote sensing. Although these silicic lithologies are thought to make up a small portion of the lunar crust, their presence indicates that lunar crustal evolution is more complex than originally thought. Models currently used to describe the formation of silicic lithologies on the Moon include in situ differentiation of a magma, magma differentiation with silicate liquid immiscibility, and partial melting of the crust. This study focuses on testing a crustal melting model through partial melting experiments on compositions representing lithologies spatially associated with the silicic domes. The experiments were guided by the results of modeling melting temperatures and residual melt compositions of possible protoliths for lunar silicic rocks using the thermodynamic modeling software, rhyolite-MELTS. Rhyolite-MELTS simulations predict liquidus temperatures of 950-1040 °C for lunar granites under anhydrous conditions, which guided the temperature range for the experiments. Monzogabbro, alkali gabbronorite, and KREEP basalt were identified as potential protoliths due to their ages, locations on the Moon (i.e., located near observed silicic domes), chemically evolved compositions, and the results from rhyolite-MELTS modeling. Partial melting experiments, using mixtures of reagent grade oxide powders representing bulk rock compositions of these rock types, were carried out at atmospheric pressure over the temperature range of 900-1100 °C. Because all lunar granite samples and remotely sensed domes have an elevated abundance of Th, some of the mixtures were doped with Th to observe its partitioning behavior. Run products show that at temperatures of 1050 and 1100 °C, melts of the three protoliths are not silicic in nature (i.e., they have <63 wt{\%} SiO2). By 1000 °C, melts of both monzogabbro and alkali gabbronorite approach the composition of granite, but are also characterized by immiscible Si-rich and Fe-rich liquids. Furthermore, Th strongly partitions into the Fe-rich, and not the Si-rich glass in all experimental runs. Our work provides important constraints on the mechanism of silicic melt formation on the Moon. The observed high-Th content of lunar granite is difficult to explain by silicate liquid immiscibility, because through this process, Th is not fractionated into the Si-rich phase. Results of our experiments and modeling suggests that silicic lunar rocks could be produced from monzogabbro and alkali gabbronorite protoliths by partial melting at T < 1000 °C. Additionally, we speculate that at higher pressures (P ≥ 0.005 GPa), the observed immiscibility in the partial melting experiments would be suppressed.",
keywords = "crustal melting, Moon, partial melting experiments, silicate liquid immiscibility, silicic volcanism",
author = "Gullikson, {Amber L.} and Hagerty, {Justin J.} and Mary Reid and Rapp, {Jennifer F.} and Draper, {David S.}",
year = "2016",
month = "10",
day = "1",
doi = "10.2138/am-2016-5619",
language = "English (US)",
volume = "101",
pages = "2312--2321",
journal = "American Mineralogist",
issn = "0003-004X",
publisher = "Mineralogical Society of America",
number = "10",

}

TY - JOUR

T1 - Silicic lunar volcanism

T2 - Testing the crustal melting model

AU - Gullikson, Amber L.

AU - Hagerty, Justin J.

AU - Reid, Mary

AU - Rapp, Jennifer F.

AU - Draper, David S.

PY - 2016/10/1

Y1 - 2016/10/1

N2 - Lunar silicic rocks were first identified by granitic fragments found in samples brought to Earth by the Apollo missions, followed by the discovery of silicic domes on the lunar surface through remote sensing. Although these silicic lithologies are thought to make up a small portion of the lunar crust, their presence indicates that lunar crustal evolution is more complex than originally thought. Models currently used to describe the formation of silicic lithologies on the Moon include in situ differentiation of a magma, magma differentiation with silicate liquid immiscibility, and partial melting of the crust. This study focuses on testing a crustal melting model through partial melting experiments on compositions representing lithologies spatially associated with the silicic domes. The experiments were guided by the results of modeling melting temperatures and residual melt compositions of possible protoliths for lunar silicic rocks using the thermodynamic modeling software, rhyolite-MELTS. Rhyolite-MELTS simulations predict liquidus temperatures of 950-1040 °C for lunar granites under anhydrous conditions, which guided the temperature range for the experiments. Monzogabbro, alkali gabbronorite, and KREEP basalt were identified as potential protoliths due to their ages, locations on the Moon (i.e., located near observed silicic domes), chemically evolved compositions, and the results from rhyolite-MELTS modeling. Partial melting experiments, using mixtures of reagent grade oxide powders representing bulk rock compositions of these rock types, were carried out at atmospheric pressure over the temperature range of 900-1100 °C. Because all lunar granite samples and remotely sensed domes have an elevated abundance of Th, some of the mixtures were doped with Th to observe its partitioning behavior. Run products show that at temperatures of 1050 and 1100 °C, melts of the three protoliths are not silicic in nature (i.e., they have <63 wt% SiO2). By 1000 °C, melts of both monzogabbro and alkali gabbronorite approach the composition of granite, but are also characterized by immiscible Si-rich and Fe-rich liquids. Furthermore, Th strongly partitions into the Fe-rich, and not the Si-rich glass in all experimental runs. Our work provides important constraints on the mechanism of silicic melt formation on the Moon. The observed high-Th content of lunar granite is difficult to explain by silicate liquid immiscibility, because through this process, Th is not fractionated into the Si-rich phase. Results of our experiments and modeling suggests that silicic lunar rocks could be produced from monzogabbro and alkali gabbronorite protoliths by partial melting at T < 1000 °C. Additionally, we speculate that at higher pressures (P ≥ 0.005 GPa), the observed immiscibility in the partial melting experiments would be suppressed.

AB - Lunar silicic rocks were first identified by granitic fragments found in samples brought to Earth by the Apollo missions, followed by the discovery of silicic domes on the lunar surface through remote sensing. Although these silicic lithologies are thought to make up a small portion of the lunar crust, their presence indicates that lunar crustal evolution is more complex than originally thought. Models currently used to describe the formation of silicic lithologies on the Moon include in situ differentiation of a magma, magma differentiation with silicate liquid immiscibility, and partial melting of the crust. This study focuses on testing a crustal melting model through partial melting experiments on compositions representing lithologies spatially associated with the silicic domes. The experiments were guided by the results of modeling melting temperatures and residual melt compositions of possible protoliths for lunar silicic rocks using the thermodynamic modeling software, rhyolite-MELTS. Rhyolite-MELTS simulations predict liquidus temperatures of 950-1040 °C for lunar granites under anhydrous conditions, which guided the temperature range for the experiments. Monzogabbro, alkali gabbronorite, and KREEP basalt were identified as potential protoliths due to their ages, locations on the Moon (i.e., located near observed silicic domes), chemically evolved compositions, and the results from rhyolite-MELTS modeling. Partial melting experiments, using mixtures of reagent grade oxide powders representing bulk rock compositions of these rock types, were carried out at atmospheric pressure over the temperature range of 900-1100 °C. Because all lunar granite samples and remotely sensed domes have an elevated abundance of Th, some of the mixtures were doped with Th to observe its partitioning behavior. Run products show that at temperatures of 1050 and 1100 °C, melts of the three protoliths are not silicic in nature (i.e., they have <63 wt% SiO2). By 1000 °C, melts of both monzogabbro and alkali gabbronorite approach the composition of granite, but are also characterized by immiscible Si-rich and Fe-rich liquids. Furthermore, Th strongly partitions into the Fe-rich, and not the Si-rich glass in all experimental runs. Our work provides important constraints on the mechanism of silicic melt formation on the Moon. The observed high-Th content of lunar granite is difficult to explain by silicate liquid immiscibility, because through this process, Th is not fractionated into the Si-rich phase. Results of our experiments and modeling suggests that silicic lunar rocks could be produced from monzogabbro and alkali gabbronorite protoliths by partial melting at T < 1000 °C. Additionally, we speculate that at higher pressures (P ≥ 0.005 GPa), the observed immiscibility in the partial melting experiments would be suppressed.

KW - crustal melting

KW - Moon

KW - partial melting experiments

KW - silicate liquid immiscibility

KW - silicic volcanism

UR - http://www.scopus.com/inward/record.url?scp=84990879023&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84990879023&partnerID=8YFLogxK

U2 - 10.2138/am-2016-5619

DO - 10.2138/am-2016-5619

M3 - Article

VL - 101

SP - 2312

EP - 2321

JO - American Mineralogist

JF - American Mineralogist

SN - 0003-004X

IS - 10

ER -