Seeing the forest for the trees: Long-term exposure to elevated CO2 increases some herbivore densities

Peter Stiling, Daniel Moon, Anthony Rossi, Bruce A Hungate, Bert Drake

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The effects of elevated CO2 on plant growth and insect herbivory have been frequently investigated over the past 20 years. Most studies have shown an increase in plant growth, a decrease in plant nitrogen concentration, an increase in plant secondary metabolites and a decrease in herbivory. However, such studies have generally overlooked the fact that increases in plant production could cause increases of herbivores per unit area of habitat. Our study investigated leaf production, herbivory levels and herbivore abundance per unit area of leaf litter in a scrub-oak system at Kennedy Space Center, Florida, under conditions of ambient and elevated CO2, over an 11-year period, from 1996 to 2007. In every year, herbivory, that is leafminer and leaftier abundance per 200 leaves, was lower under elevated CO2 than ambient CO2 for each of three species of oaks, Quercus myrtifolia, Quercus chapmanii and Quercus geminata. However, leaf litter production per 0.1143 m2 was greater under elevated CO2 than ambient CO2 for Q. myrtifolia and Q. chapmanii, and this difference increased over the 11 years of the study. Leaf production of Q. geminata under elevated CO2 did not increase. Leafminer densities per 0.1143 m2 of litterfall for Q. myrtifolia and Q. chapmanii were initially lower under elevated CO2. However, shortly after canopy closure in 2001, leafminer densities per 0.1143 m2 of litter fall became higher under elevated CO2 and remained higher for the remainder of the experiment. Leaftier densities per 0.1143 m2 were also higher under elevated CO2 for Q. myrtifolia and Q. chapmanii over the last 6 years of the experiment. There were no differences in leafminer or leaftier densities per 0.1143 m2 of litter for Q. geminata. These results show three phenomena. First, they show that elevated CO2 decreases herbivory on all oak species in the Florida scrub-oak system. Second, despite lower numbers of herbivores per 200 leaves in elevated CO2, increased leaf production resulted in higher herbivore densities per unit area of leaf litter for two oak species. Third, they corroborate other studies which suggest that the effects of elevated CO2 on herbivores are species specific, meaning they depend on the particular plant species involved. Two oak species showed increases in leaf production and herbivore densities per 0.1143 m2 in elevated CO2 over time while another oak species did not. Our results point to a future world of elevated CO2 where, despite lower plant herbivory, some insect herbivores may become more common.

Original languageEnglish (US)
Pages (from-to)1895-1902
Number of pages8
JournalGlobal Change Biology
Volume15
Issue number8
DOIs
StatePublished - 2009

Fingerprint

herbivore
herbivory
leafminer
leaf litter
litterfall
scrub
insect
Metabolites
secondary metabolite
oak
exposure
Nitrogen
Experiments
litter
experiment
canopy
nitrogen
habitat

Keywords

  • Elevated CO
  • Insect densities
  • Insect herbivory
  • Kennedy Space Center
  • Leaf production
  • Long-term effects
  • Oak trees
  • Species-specific responses

ASJC Scopus subject areas

  • Ecology
  • Global and Planetary Change
  • Environmental Science(all)
  • Environmental Chemistry

Cite this

Seeing the forest for the trees : Long-term exposure to elevated CO2 increases some herbivore densities. / Stiling, Peter; Moon, Daniel; Rossi, Anthony; Hungate, Bruce A; Drake, Bert.

In: Global Change Biology, Vol. 15, No. 8, 2009, p. 1895-1902.

Research output: Contribution to journalArticle

Stiling, Peter ; Moon, Daniel ; Rossi, Anthony ; Hungate, Bruce A ; Drake, Bert. / Seeing the forest for the trees : Long-term exposure to elevated CO2 increases some herbivore densities. In: Global Change Biology. 2009 ; Vol. 15, No. 8. pp. 1895-1902.
@article{3fc3c7158bbf47c0a80afa8886fe674f,
title = "Seeing the forest for the trees: Long-term exposure to elevated CO2 increases some herbivore densities",
abstract = "The effects of elevated CO2 on plant growth and insect herbivory have been frequently investigated over the past 20 years. Most studies have shown an increase in plant growth, a decrease in plant nitrogen concentration, an increase in plant secondary metabolites and a decrease in herbivory. However, such studies have generally overlooked the fact that increases in plant production could cause increases of herbivores per unit area of habitat. Our study investigated leaf production, herbivory levels and herbivore abundance per unit area of leaf litter in a scrub-oak system at Kennedy Space Center, Florida, under conditions of ambient and elevated CO2, over an 11-year period, from 1996 to 2007. In every year, herbivory, that is leafminer and leaftier abundance per 200 leaves, was lower under elevated CO2 than ambient CO2 for each of three species of oaks, Quercus myrtifolia, Quercus chapmanii and Quercus geminata. However, leaf litter production per 0.1143 m2 was greater under elevated CO2 than ambient CO2 for Q. myrtifolia and Q. chapmanii, and this difference increased over the 11 years of the study. Leaf production of Q. geminata under elevated CO2 did not increase. Leafminer densities per 0.1143 m2 of litterfall for Q. myrtifolia and Q. chapmanii were initially lower under elevated CO2. However, shortly after canopy closure in 2001, leafminer densities per 0.1143 m2 of litter fall became higher under elevated CO2 and remained higher for the remainder of the experiment. Leaftier densities per 0.1143 m2 were also higher under elevated CO2 for Q. myrtifolia and Q. chapmanii over the last 6 years of the experiment. There were no differences in leafminer or leaftier densities per 0.1143 m2 of litter for Q. geminata. These results show three phenomena. First, they show that elevated CO2 decreases herbivory on all oak species in the Florida scrub-oak system. Second, despite lower numbers of herbivores per 200 leaves in elevated CO2, increased leaf production resulted in higher herbivore densities per unit area of leaf litter for two oak species. Third, they corroborate other studies which suggest that the effects of elevated CO2 on herbivores are species specific, meaning they depend on the particular plant species involved. Two oak species showed increases in leaf production and herbivore densities per 0.1143 m2 in elevated CO2 over time while another oak species did not. Our results point to a future world of elevated CO2 where, despite lower plant herbivory, some insect herbivores may become more common.",
keywords = "Elevated CO, Insect densities, Insect herbivory, Kennedy Space Center, Leaf production, Long-term effects, Oak trees, Species-specific responses",
author = "Peter Stiling and Daniel Moon and Anthony Rossi and Hungate, {Bruce A} and Bert Drake",
year = "2009",
doi = "10.1111/j.1365-2486.2009.01902.x",
language = "English (US)",
volume = "15",
pages = "1895--1902",
journal = "Global Change Biology",
issn = "1354-1013",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Seeing the forest for the trees

T2 - Long-term exposure to elevated CO2 increases some herbivore densities

AU - Stiling, Peter

AU - Moon, Daniel

AU - Rossi, Anthony

AU - Hungate, Bruce A

AU - Drake, Bert

PY - 2009

Y1 - 2009

N2 - The effects of elevated CO2 on plant growth and insect herbivory have been frequently investigated over the past 20 years. Most studies have shown an increase in plant growth, a decrease in plant nitrogen concentration, an increase in plant secondary metabolites and a decrease in herbivory. However, such studies have generally overlooked the fact that increases in plant production could cause increases of herbivores per unit area of habitat. Our study investigated leaf production, herbivory levels and herbivore abundance per unit area of leaf litter in a scrub-oak system at Kennedy Space Center, Florida, under conditions of ambient and elevated CO2, over an 11-year period, from 1996 to 2007. In every year, herbivory, that is leafminer and leaftier abundance per 200 leaves, was lower under elevated CO2 than ambient CO2 for each of three species of oaks, Quercus myrtifolia, Quercus chapmanii and Quercus geminata. However, leaf litter production per 0.1143 m2 was greater under elevated CO2 than ambient CO2 for Q. myrtifolia and Q. chapmanii, and this difference increased over the 11 years of the study. Leaf production of Q. geminata under elevated CO2 did not increase. Leafminer densities per 0.1143 m2 of litterfall for Q. myrtifolia and Q. chapmanii were initially lower under elevated CO2. However, shortly after canopy closure in 2001, leafminer densities per 0.1143 m2 of litter fall became higher under elevated CO2 and remained higher for the remainder of the experiment. Leaftier densities per 0.1143 m2 were also higher under elevated CO2 for Q. myrtifolia and Q. chapmanii over the last 6 years of the experiment. There were no differences in leafminer or leaftier densities per 0.1143 m2 of litter for Q. geminata. These results show three phenomena. First, they show that elevated CO2 decreases herbivory on all oak species in the Florida scrub-oak system. Second, despite lower numbers of herbivores per 200 leaves in elevated CO2, increased leaf production resulted in higher herbivore densities per unit area of leaf litter for two oak species. Third, they corroborate other studies which suggest that the effects of elevated CO2 on herbivores are species specific, meaning they depend on the particular plant species involved. Two oak species showed increases in leaf production and herbivore densities per 0.1143 m2 in elevated CO2 over time while another oak species did not. Our results point to a future world of elevated CO2 where, despite lower plant herbivory, some insect herbivores may become more common.

AB - The effects of elevated CO2 on plant growth and insect herbivory have been frequently investigated over the past 20 years. Most studies have shown an increase in plant growth, a decrease in plant nitrogen concentration, an increase in plant secondary metabolites and a decrease in herbivory. However, such studies have generally overlooked the fact that increases in plant production could cause increases of herbivores per unit area of habitat. Our study investigated leaf production, herbivory levels and herbivore abundance per unit area of leaf litter in a scrub-oak system at Kennedy Space Center, Florida, under conditions of ambient and elevated CO2, over an 11-year period, from 1996 to 2007. In every year, herbivory, that is leafminer and leaftier abundance per 200 leaves, was lower under elevated CO2 than ambient CO2 for each of three species of oaks, Quercus myrtifolia, Quercus chapmanii and Quercus geminata. However, leaf litter production per 0.1143 m2 was greater under elevated CO2 than ambient CO2 for Q. myrtifolia and Q. chapmanii, and this difference increased over the 11 years of the study. Leaf production of Q. geminata under elevated CO2 did not increase. Leafminer densities per 0.1143 m2 of litterfall for Q. myrtifolia and Q. chapmanii were initially lower under elevated CO2. However, shortly after canopy closure in 2001, leafminer densities per 0.1143 m2 of litter fall became higher under elevated CO2 and remained higher for the remainder of the experiment. Leaftier densities per 0.1143 m2 were also higher under elevated CO2 for Q. myrtifolia and Q. chapmanii over the last 6 years of the experiment. There were no differences in leafminer or leaftier densities per 0.1143 m2 of litter for Q. geminata. These results show three phenomena. First, they show that elevated CO2 decreases herbivory on all oak species in the Florida scrub-oak system. Second, despite lower numbers of herbivores per 200 leaves in elevated CO2, increased leaf production resulted in higher herbivore densities per unit area of leaf litter for two oak species. Third, they corroborate other studies which suggest that the effects of elevated CO2 on herbivores are species specific, meaning they depend on the particular plant species involved. Two oak species showed increases in leaf production and herbivore densities per 0.1143 m2 in elevated CO2 over time while another oak species did not. Our results point to a future world of elevated CO2 where, despite lower plant herbivory, some insect herbivores may become more common.

KW - Elevated CO

KW - Insect densities

KW - Insect herbivory

KW - Kennedy Space Center

KW - Leaf production

KW - Long-term effects

KW - Oak trees

KW - Species-specific responses

UR - http://www.scopus.com/inward/record.url?scp=67650141691&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650141691&partnerID=8YFLogxK

U2 - 10.1111/j.1365-2486.2009.01902.x

DO - 10.1111/j.1365-2486.2009.01902.x

M3 - Article

AN - SCOPUS:67650141691

VL - 15

SP - 1895

EP - 1902

JO - Global Change Biology

JF - Global Change Biology

SN - 1354-1013

IS - 8

ER -