Quadratic and Cubic Optical Nonlinearities of Y-Shaped and Distorted-H-Shaped Arylalkynylruthenium Complexes

Mahbod Morshedi, Mahesh S. Kodikara, T. Christopher Corkery, Stephanie K Hurst, Sanjay S. Chavan, Erandi Kulasekera, Rob Stranger, Marek Samoc, Stijn Van Cleuvenbergen, Inge Asselberghs, Koen Clays, Marie P. Cifuentes, Mark G. Humphrey

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

Straightforward syntheses of bis[bis{1,2-bis(diphenylphosphino)ethane}ruthenium]-functionalized 1,3,5-triethynylbenzene-cored complexes via a methodology employing “steric control” permit facile formation of Y-shaped Sonogashira coupling products and distorted-H-shaped homo-coupled quadrupolar products. Cyclic voltammetric data from these products reveal two reversible metal alkynyl-localized oxidation processes for all complexes. The wavelengths of the linear optical absorption maxima are dominated by the nature of the peripheral alkynyl ligand rather than the substituent at the unique arm of the “Y” or at the quadrupolar complex “core”. The quadratic optical nonlinearities of the Y-shaped complexes were assessed by the hyper-Rayleigh scattering technique at 800 nm and employing 100 fs light pulses; introduction of donor NEt2 and/or acceptor NO2 to the wedge periphery resulted in non-zero nonlinearities, with the largest βHRS,800 values being observed for the complexes containing the 4-nitrophenylalkynyl ligands. Depolarization ratios are consistent with substantial off-diagonal first hyperpolarizability tensor components and 2D nonlinear character. Computational studies employing time-dependent density functional theory have been employed to assign the key low-energy transitions in the linear optical spectra and to compute the quadratic nonlinear optical tensorial components. Cubic optical nonlinearities of the quadrupolar complexes were assessed by the Z-scan technique over the range 500–1600 nm and employing 130 fs light pulses; two-photon absorption cross-sections for these distorted-H-shaped complexes are moderate to large in value (up to 5500 GM at 880 nm), while one example displays significant three-photon absorption (1300×10−80 cm6 s2 at 1200 nm).

Original languageEnglish (US)
Pages (from-to)16332-16341
Number of pages10
JournalChemistry - A European Journal
Volume24
Issue number61
DOIs
StatePublished - Nov 2 2018
Externally publishedYes

    Fingerprint

Keywords

  • absorption spectroscopy
  • cross-coupling reactions
  • organometallic
  • ruthenium
  • sterics

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry

Cite this

Morshedi, M., Kodikara, M. S., Corkery, T. C., Hurst, S. K., Chavan, S. S., Kulasekera, E., Stranger, R., Samoc, M., Van Cleuvenbergen, S., Asselberghs, I., Clays, K., Cifuentes, M. P., & Humphrey, M. G. (2018). Quadratic and Cubic Optical Nonlinearities of Y-Shaped and Distorted-H-Shaped Arylalkynylruthenium Complexes. Chemistry - A European Journal, 24(61), 16332-16341. https://doi.org/10.1002/chem.201803696