Qiita

rapid, web-enabled microbiome meta-analysis

Antonio Gonzalez, Jose A. Navas-Molina, Tomasz Kosciolek, Daniel McDonald, Yoshiki Vázquez-Baeza, Gail Ackermann, Jeff DeReus, Stefan Janssen, Austin D. Swafford, Stephanie B. Orchanian, Jon G. Sanders, Joshua Shorenstein, Hannes Holste, Semar Petrus, Adam Robbins-Pianka, Colin J. Brislawn, Mingxun Wang, Jai Ram Rideout, Evan Bolyen, Matthew Dillon & 3 others James G Caporaso, Pieter C. Dorrestein, Rob Knight

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.

Original languageEnglish (US)
Pages (from-to)796-798
Number of pages3
JournalNature Methods
Volume15
Issue number10
DOIs
StatePublished - Oct 1 2018

Fingerprint

Microbiota
Meta-Analysis
Chemical analysis

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Gonzalez, A., Navas-Molina, J. A., Kosciolek, T., McDonald, D., Vázquez-Baeza, Y., Ackermann, G., ... Knight, R. (2018). Qiita: rapid, web-enabled microbiome meta-analysis. Nature Methods, 15(10), 796-798. https://doi.org/10.1038/s41592-018-0141-9

Qiita : rapid, web-enabled microbiome meta-analysis. / Gonzalez, Antonio; Navas-Molina, Jose A.; Kosciolek, Tomasz; McDonald, Daniel; Vázquez-Baeza, Yoshiki; Ackermann, Gail; DeReus, Jeff; Janssen, Stefan; Swafford, Austin D.; Orchanian, Stephanie B.; Sanders, Jon G.; Shorenstein, Joshua; Holste, Hannes; Petrus, Semar; Robbins-Pianka, Adam; Brislawn, Colin J.; Wang, Mingxun; Rideout, Jai Ram; Bolyen, Evan; Dillon, Matthew; Caporaso, James G; Dorrestein, Pieter C.; Knight, Rob.

In: Nature Methods, Vol. 15, No. 10, 01.10.2018, p. 796-798.

Research output: Contribution to journalArticle

Gonzalez, A, Navas-Molina, JA, Kosciolek, T, McDonald, D, Vázquez-Baeza, Y, Ackermann, G, DeReus, J, Janssen, S, Swafford, AD, Orchanian, SB, Sanders, JG, Shorenstein, J, Holste, H, Petrus, S, Robbins-Pianka, A, Brislawn, CJ, Wang, M, Rideout, JR, Bolyen, E, Dillon, M, Caporaso, JG, Dorrestein, PC & Knight, R 2018, 'Qiita: rapid, web-enabled microbiome meta-analysis', Nature Methods, vol. 15, no. 10, pp. 796-798. https://doi.org/10.1038/s41592-018-0141-9
Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nature Methods. 2018 Oct 1;15(10):796-798. https://doi.org/10.1038/s41592-018-0141-9
Gonzalez, Antonio ; Navas-Molina, Jose A. ; Kosciolek, Tomasz ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Ackermann, Gail ; DeReus, Jeff ; Janssen, Stefan ; Swafford, Austin D. ; Orchanian, Stephanie B. ; Sanders, Jon G. ; Shorenstein, Joshua ; Holste, Hannes ; Petrus, Semar ; Robbins-Pianka, Adam ; Brislawn, Colin J. ; Wang, Mingxun ; Rideout, Jai Ram ; Bolyen, Evan ; Dillon, Matthew ; Caporaso, James G ; Dorrestein, Pieter C. ; Knight, Rob. / Qiita : rapid, web-enabled microbiome meta-analysis. In: Nature Methods. 2018 ; Vol. 15, No. 10. pp. 796-798.
@article{a3e2700e315e424a9edcc640860119f7,
title = "Qiita: rapid, web-enabled microbiome meta-analysis",
abstract = "Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.",
author = "Antonio Gonzalez and Navas-Molina, {Jose A.} and Tomasz Kosciolek and Daniel McDonald and Yoshiki V{\'a}zquez-Baeza and Gail Ackermann and Jeff DeReus and Stefan Janssen and Swafford, {Austin D.} and Orchanian, {Stephanie B.} and Sanders, {Jon G.} and Joshua Shorenstein and Hannes Holste and Semar Petrus and Adam Robbins-Pianka and Brislawn, {Colin J.} and Mingxun Wang and Rideout, {Jai Ram} and Evan Bolyen and Matthew Dillon and Caporaso, {James G} and Dorrestein, {Pieter C.} and Rob Knight",
year = "2018",
month = "10",
day = "1",
doi = "10.1038/s41592-018-0141-9",
language = "English (US)",
volume = "15",
pages = "796--798",
journal = "Nature Methods",
issn = "1549-1277",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Qiita

T2 - rapid, web-enabled microbiome meta-analysis

AU - Gonzalez, Antonio

AU - Navas-Molina, Jose A.

AU - Kosciolek, Tomasz

AU - McDonald, Daniel

AU - Vázquez-Baeza, Yoshiki

AU - Ackermann, Gail

AU - DeReus, Jeff

AU - Janssen, Stefan

AU - Swafford, Austin D.

AU - Orchanian, Stephanie B.

AU - Sanders, Jon G.

AU - Shorenstein, Joshua

AU - Holste, Hannes

AU - Petrus, Semar

AU - Robbins-Pianka, Adam

AU - Brislawn, Colin J.

AU - Wang, Mingxun

AU - Rideout, Jai Ram

AU - Bolyen, Evan

AU - Dillon, Matthew

AU - Caporaso, James G

AU - Dorrestein, Pieter C.

AU - Knight, Rob

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.

AB - Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.

UR - http://www.scopus.com/inward/record.url?scp=85054059754&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054059754&partnerID=8YFLogxK

U2 - 10.1038/s41592-018-0141-9

DO - 10.1038/s41592-018-0141-9

M3 - Article

VL - 15

SP - 796

EP - 798

JO - Nature Methods

JF - Nature Methods

SN - 1549-1277

IS - 10

ER -