Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass

César Terrer, Robert B. Jackson, I. Colin Prentice, Trevor F. Keenan, Christina Kaiser, Sara Vicca, Joshua B. Fisher, Peter B. Reich, Benjamin D. Stocker, Bruce A. Hungate, Josep Peñuelas, Ian McCallum, Nadejda A. Soudzilovskaia, Lucas A. Cernusak, Alan F. Talhelm, Kevin Van Sundert, Shilong Piao, Paul C.D. Newton, Mark J. Hovenden, Dana M. BlumenthalYi Y. Liu, Christoph Müller, Klaus Winter, Christopher B. Field, Wolfgang Viechtbauer, Caspar J. Van Lissa, Marcel R. Hoosbeek, Makoto Watanabe, Takayoshi Koike, Victor O. Leshyk, H. Wayne Polley, Oskar Franklin

Research output: Contribution to journalLetter

5 Citations (Scopus)

Abstract

Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1–6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2 7,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness9 and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.

Original languageEnglish (US)
Pages (from-to)684-689
Number of pages6
JournalNature Climate Change
Volume9
Issue number9
DOIs
StatePublished - Sep 1 2019

Fingerprint

phosphorus
nitrogen
experiment
biomass
projection
vegetation
nutrient limitation
quantification
soil nutrient
climate
effect
evidence
Values

ASJC Scopus subject areas

  • Environmental Science (miscellaneous)
  • Social Sciences (miscellaneous)

Cite this

Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., ... Franklin, O. (2019). Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 9(9), 684-689. https://doi.org/10.1038/s41558-019-0545-2

Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. / Terrer, César; Jackson, Robert B.; Prentice, I. Colin; Keenan, Trevor F.; Kaiser, Christina; Vicca, Sara; Fisher, Joshua B.; Reich, Peter B.; Stocker, Benjamin D.; Hungate, Bruce A.; Peñuelas, Josep; McCallum, Ian; Soudzilovskaia, Nadejda A.; Cernusak, Lucas A.; Talhelm, Alan F.; Van Sundert, Kevin; Piao, Shilong; Newton, Paul C.D.; Hovenden, Mark J.; Blumenthal, Dana M.; Liu, Yi Y.; Müller, Christoph; Winter, Klaus; Field, Christopher B.; Viechtbauer, Wolfgang; Van Lissa, Caspar J.; Hoosbeek, Marcel R.; Watanabe, Makoto; Koike, Takayoshi; Leshyk, Victor O.; Polley, H. Wayne; Franklin, Oskar.

In: Nature Climate Change, Vol. 9, No. 9, 01.09.2019, p. 684-689.

Research output: Contribution to journalLetter

Terrer, C, Jackson, RB, Prentice, IC, Keenan, TF, Kaiser, C, Vicca, S, Fisher, JB, Reich, PB, Stocker, BD, Hungate, BA, Peñuelas, J, McCallum, I, Soudzilovskaia, NA, Cernusak, LA, Talhelm, AF, Van Sundert, K, Piao, S, Newton, PCD, Hovenden, MJ, Blumenthal, DM, Liu, YY, Müller, C, Winter, K, Field, CB, Viechtbauer, W, Van Lissa, CJ, Hoosbeek, MR, Watanabe, M, Koike, T, Leshyk, VO, Polley, HW & Franklin, O 2019, 'Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass', Nature Climate Change, vol. 9, no. 9, pp. 684-689. https://doi.org/10.1038/s41558-019-0545-2
Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change. 2019 Sep 1;9(9):684-689. https://doi.org/10.1038/s41558-019-0545-2
Terrer, César ; Jackson, Robert B. ; Prentice, I. Colin ; Keenan, Trevor F. ; Kaiser, Christina ; Vicca, Sara ; Fisher, Joshua B. ; Reich, Peter B. ; Stocker, Benjamin D. ; Hungate, Bruce A. ; Peñuelas, Josep ; McCallum, Ian ; Soudzilovskaia, Nadejda A. ; Cernusak, Lucas A. ; Talhelm, Alan F. ; Van Sundert, Kevin ; Piao, Shilong ; Newton, Paul C.D. ; Hovenden, Mark J. ; Blumenthal, Dana M. ; Liu, Yi Y. ; Müller, Christoph ; Winter, Klaus ; Field, Christopher B. ; Viechtbauer, Wolfgang ; Van Lissa, Caspar J. ; Hoosbeek, Marcel R. ; Watanabe, Makoto ; Koike, Takayoshi ; Leshyk, Victor O. ; Polley, H. Wayne ; Franklin, Oskar. / Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. In: Nature Climate Change. 2019 ; Vol. 9, No. 9. pp. 684-689.
@article{82000a8d51da42e0a5d1887bed46fb96,
title = "Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass",
abstract = "Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1–6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2 7,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65{\%} of global vegetation and by phosphorus (P) in ~25{\%} of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3{\%} above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness9 and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.",
author = "C{\'e}sar Terrer and Jackson, {Robert B.} and Prentice, {I. Colin} and Keenan, {Trevor F.} and Christina Kaiser and Sara Vicca and Fisher, {Joshua B.} and Reich, {Peter B.} and Stocker, {Benjamin D.} and Hungate, {Bruce A.} and Josep Pe{\~n}uelas and Ian McCallum and Soudzilovskaia, {Nadejda A.} and Cernusak, {Lucas A.} and Talhelm, {Alan F.} and {Van Sundert}, Kevin and Shilong Piao and Newton, {Paul C.D.} and Hovenden, {Mark J.} and Blumenthal, {Dana M.} and Liu, {Yi Y.} and Christoph M{\"u}ller and Klaus Winter and Field, {Christopher B.} and Wolfgang Viechtbauer and {Van Lissa}, {Caspar J.} and Hoosbeek, {Marcel R.} and Makoto Watanabe and Takayoshi Koike and Leshyk, {Victor O.} and Polley, {H. Wayne} and Oskar Franklin",
year = "2019",
month = "9",
day = "1",
doi = "10.1038/s41558-019-0545-2",
language = "English (US)",
volume = "9",
pages = "684--689",
journal = "Nature Climate Change",
issn = "1758-678X",
publisher = "Nature Publishing Group",
number = "9",

}

TY - JOUR

T1 - Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass

AU - Terrer, César

AU - Jackson, Robert B.

AU - Prentice, I. Colin

AU - Keenan, Trevor F.

AU - Kaiser, Christina

AU - Vicca, Sara

AU - Fisher, Joshua B.

AU - Reich, Peter B.

AU - Stocker, Benjamin D.

AU - Hungate, Bruce A.

AU - Peñuelas, Josep

AU - McCallum, Ian

AU - Soudzilovskaia, Nadejda A.

AU - Cernusak, Lucas A.

AU - Talhelm, Alan F.

AU - Van Sundert, Kevin

AU - Piao, Shilong

AU - Newton, Paul C.D.

AU - Hovenden, Mark J.

AU - Blumenthal, Dana M.

AU - Liu, Yi Y.

AU - Müller, Christoph

AU - Winter, Klaus

AU - Field, Christopher B.

AU - Viechtbauer, Wolfgang

AU - Van Lissa, Caspar J.

AU - Hoosbeek, Marcel R.

AU - Watanabe, Makoto

AU - Koike, Takayoshi

AU - Leshyk, Victor O.

AU - Polley, H. Wayne

AU - Franklin, Oskar

PY - 2019/9/1

Y1 - 2019/9/1

N2 - Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1–6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2 7,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness9 and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.

AB - Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1–6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2 7,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness9 and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.

UR - http://www.scopus.com/inward/record.url?scp=85070793012&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070793012&partnerID=8YFLogxK

U2 - 10.1038/s41558-019-0545-2

DO - 10.1038/s41558-019-0545-2

M3 - Letter

AN - SCOPUS:85070793012

VL - 9

SP - 684

EP - 689

JO - Nature Climate Change

JF - Nature Climate Change

SN - 1758-678X

IS - 9

ER -