Modeling waves and short-lived peak velocities and impact loads associated with snow avalanches

Robert Rice, Rand Decker

Research output: Contribution to journalArticle

1 Scopus citations


The one-dimensional, unsteady, gradually varying free surface, open channel equations are solved numerically using the lax diffusive scheme. The numerical model is applied to simulate avalanche flow and to capture the existence of waveforms leading to the estimation of short-lived peak velocities and impact pressures for any point along a given avalanche track. The simulation of both laboratory and field experiments are pres ented to demonstrate the viability of the discretization scheme. To verify numerical results of this new numerical model, results from the Swiss hydraulic continuum model for avalanche motion are presented and compared. The lax diffusive scheme provides acceptable results when compared to these laboratory and full-scale avalanche results and when compared to the Swiss numerical results. Simulations are presented to d emonstrate the ability for the numerical model to capture and track waveforms within the avalanche flow, to estimate short-lived peak velocities and impact pressures for any position along the avalanche track - especially when perturbations (i.e., terrain changes) are introduced into the flow. These perturbations are particularly evident when releasing a wave-like form from rest down an incline. Difficulties are encountered when trying to simulate in situ results and recreating the richness of the data.

Original languageEnglish (US)
Pages (from-to)221-233
Number of pages13
JournalCold Regions Science and Technology
Issue number3
StatePublished - Mar 2005



  • Debris flows
  • Granular flows
  • Hydraulics
  • Numerical modeling
  • Snow avalanches

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)
  • Geotechnical Engineering and Engineering Geology

Cite this