Managing user delay with a focus on pedestrian operations

Christopher Sobie, Edward J Smaglik, Anuj Sharma, Andrew Kading, Sirisha Kothuri, Peter Koonce

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Across the United States, walking trips are increasing. However, pedestrians still face significantly higher delays than motor vehicles at signalized intersections because of the traditional signal timing practices of prioritizing vehicular movements. This study explored methods to reduce pedestrian delay through the development of a pedestrian priority algorithm that selects an operational plan favorable to pedestrian service, provided a user-defined volume threshold has been met for the major street. This algorithm - along with several operational scenarios - was analyzed with Vissim with the use of software-in-the-loop simulation to determine the impact these strategies have on user delays. One of the operational scenarios examined was that of actuating a portion of the coordinated phase, or actuated-coordinated operation. Following a discussion on platoon dispersion and the application of it in the design of actuated-coordinated signal timing parameters, a sensitivity analysis was performed on vehicle extension timers to explore the impact that this coordinated movement parameter has on user delay. In the scenario analysis, it was shown that employing fully actuated (also known as free) operation - either with the designed algorithm or without - was an effective method of reducing pedestrian delay on the minor street while decreasing average intersection vehicle delay for the volumes used in the simulation. The vehicle extension sensitivity analysis showed that shortening the extension timer of an actuated-coordinated phase can reduce pedestrian delay on the minor street without increasing overall vehicle delay. This tool could be used by agencies during coordinated operation to prioritize pedestrians.

Original languageEnglish (US)
Pages (from-to)20-29
Number of pages10
JournalTransportation Research Record
Volume2558
DOIs
StatePublished - 2016

Fingerprint

Sensitivity analysis

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering

Cite this

Managing user delay with a focus on pedestrian operations. / Sobie, Christopher; Smaglik, Edward J; Sharma, Anuj; Kading, Andrew; Kothuri, Sirisha; Koonce, Peter.

In: Transportation Research Record, Vol. 2558, 2016, p. 20-29.

Research output: Contribution to journalArticle

Sobie, C, Smaglik, EJ, Sharma, A, Kading, A, Kothuri, S & Koonce, P 2016, 'Managing user delay with a focus on pedestrian operations', Transportation Research Record, vol. 2558, pp. 20-29. https://doi.org/10.3141/2558-03
Sobie, Christopher ; Smaglik, Edward J ; Sharma, Anuj ; Kading, Andrew ; Kothuri, Sirisha ; Koonce, Peter. / Managing user delay with a focus on pedestrian operations. In: Transportation Research Record. 2016 ; Vol. 2558. pp. 20-29.
@article{90b8c71ab24342bab7d35519ebe6c797,
title = "Managing user delay with a focus on pedestrian operations",
abstract = "Across the United States, walking trips are increasing. However, pedestrians still face significantly higher delays than motor vehicles at signalized intersections because of the traditional signal timing practices of prioritizing vehicular movements. This study explored methods to reduce pedestrian delay through the development of a pedestrian priority algorithm that selects an operational plan favorable to pedestrian service, provided a user-defined volume threshold has been met for the major street. This algorithm - along with several operational scenarios - was analyzed with Vissim with the use of software-in-the-loop simulation to determine the impact these strategies have on user delays. One of the operational scenarios examined was that of actuating a portion of the coordinated phase, or actuated-coordinated operation. Following a discussion on platoon dispersion and the application of it in the design of actuated-coordinated signal timing parameters, a sensitivity analysis was performed on vehicle extension timers to explore the impact that this coordinated movement parameter has on user delay. In the scenario analysis, it was shown that employing fully actuated (also known as free) operation - either with the designed algorithm or without - was an effective method of reducing pedestrian delay on the minor street while decreasing average intersection vehicle delay for the volumes used in the simulation. The vehicle extension sensitivity analysis showed that shortening the extension timer of an actuated-coordinated phase can reduce pedestrian delay on the minor street without increasing overall vehicle delay. This tool could be used by agencies during coordinated operation to prioritize pedestrians.",
author = "Christopher Sobie and Smaglik, {Edward J} and Anuj Sharma and Andrew Kading and Sirisha Kothuri and Peter Koonce",
year = "2016",
doi = "10.3141/2558-03",
language = "English (US)",
volume = "2558",
pages = "20--29",
journal = "Transportation Research Record",
issn = "0361-1981",
publisher = "US National Research Council",

}

TY - JOUR

T1 - Managing user delay with a focus on pedestrian operations

AU - Sobie, Christopher

AU - Smaglik, Edward J

AU - Sharma, Anuj

AU - Kading, Andrew

AU - Kothuri, Sirisha

AU - Koonce, Peter

PY - 2016

Y1 - 2016

N2 - Across the United States, walking trips are increasing. However, pedestrians still face significantly higher delays than motor vehicles at signalized intersections because of the traditional signal timing practices of prioritizing vehicular movements. This study explored methods to reduce pedestrian delay through the development of a pedestrian priority algorithm that selects an operational plan favorable to pedestrian service, provided a user-defined volume threshold has been met for the major street. This algorithm - along with several operational scenarios - was analyzed with Vissim with the use of software-in-the-loop simulation to determine the impact these strategies have on user delays. One of the operational scenarios examined was that of actuating a portion of the coordinated phase, or actuated-coordinated operation. Following a discussion on platoon dispersion and the application of it in the design of actuated-coordinated signal timing parameters, a sensitivity analysis was performed on vehicle extension timers to explore the impact that this coordinated movement parameter has on user delay. In the scenario analysis, it was shown that employing fully actuated (also known as free) operation - either with the designed algorithm or without - was an effective method of reducing pedestrian delay on the minor street while decreasing average intersection vehicle delay for the volumes used in the simulation. The vehicle extension sensitivity analysis showed that shortening the extension timer of an actuated-coordinated phase can reduce pedestrian delay on the minor street without increasing overall vehicle delay. This tool could be used by agencies during coordinated operation to prioritize pedestrians.

AB - Across the United States, walking trips are increasing. However, pedestrians still face significantly higher delays than motor vehicles at signalized intersections because of the traditional signal timing practices of prioritizing vehicular movements. This study explored methods to reduce pedestrian delay through the development of a pedestrian priority algorithm that selects an operational plan favorable to pedestrian service, provided a user-defined volume threshold has been met for the major street. This algorithm - along with several operational scenarios - was analyzed with Vissim with the use of software-in-the-loop simulation to determine the impact these strategies have on user delays. One of the operational scenarios examined was that of actuating a portion of the coordinated phase, or actuated-coordinated operation. Following a discussion on platoon dispersion and the application of it in the design of actuated-coordinated signal timing parameters, a sensitivity analysis was performed on vehicle extension timers to explore the impact that this coordinated movement parameter has on user delay. In the scenario analysis, it was shown that employing fully actuated (also known as free) operation - either with the designed algorithm or without - was an effective method of reducing pedestrian delay on the minor street while decreasing average intersection vehicle delay for the volumes used in the simulation. The vehicle extension sensitivity analysis showed that shortening the extension timer of an actuated-coordinated phase can reduce pedestrian delay on the minor street without increasing overall vehicle delay. This tool could be used by agencies during coordinated operation to prioritize pedestrians.

UR - http://www.scopus.com/inward/record.url?scp=85015370491&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015370491&partnerID=8YFLogxK

U2 - 10.3141/2558-03

DO - 10.3141/2558-03

M3 - Article

VL - 2558

SP - 20

EP - 29

JO - Transportation Research Record

JF - Transportation Research Record

SN - 0361-1981

ER -