Look before you leap: Visual navigation and terrestrial locomotion of the intertidal killifish Fundulus heteroclitus

Noah R. Bressman, Stacy C. Farina, Alice C Gibb

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Mummichogs (Fundulus heteroclitus; Cyprinodontiformes) are intertidal killifish that can breathe air and locomote on land. Our goals were to characterize the terrestrial locomotion of mummichogs and determine their method of navigation towards water in a terrestrial environment. We used high-speed video to record behavior during stranding experiments and found that mummichogs use a tail-flip jump to move overland, similarly to other Cyprinodontiformes. However, mummichogs also prop themselves upright into a prone position between each jump, a previously undescribed behavior. After becoming prone, mummichogs rotate about their vertical axis, directing the caudal fin towards the water. Then, they roll back onto their lateral aspect and use a tail-flip behavior to leap into a caudally-directed, ballistic flight path. We conducted experiments to determine the sensory stimulus used to locate a body of water by placing mummichogs on a square platform with one side adjacent to a sea table. Under artificial light, mummichogs moved towards the sea table with a higher frequency than towards the other sides. Under dark conditions, mummichogs did not show a preference for moving towards the sea table. When the surface of the water was covered with reflective foil, mummichogs moved towards it as if it were a body of water. These results suggest that mummichogs primarily use visual cues, specifically reflected light, to orient towards the water. The uprighting behavior that mummichogs perform between terrestrial jumps may provide an opportunity for these fish to receive visual information that allows them to safely return to the water.

Original languageEnglish (US)
Pages (from-to)57-64
Number of pages8
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume325
Issue number1
DOIs
StatePublished - Jan 1 2016

Fingerprint

Fundulidae
Fundulus heteroclitus
locomotion
Locomotion
navigation
water
Cyprinodontiformes
Water
Oceans and Seas
stranding
Body Water
visual cue
terrestrial environment
body water
Tail
tail
experiment
foil
flight
Light

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Physiology
  • Molecular Biology

Cite this

@article{d6ddeaf215474143bffb6d125e2ff211,
title = "Look before you leap: Visual navigation and terrestrial locomotion of the intertidal killifish Fundulus heteroclitus",
abstract = "Mummichogs (Fundulus heteroclitus; Cyprinodontiformes) are intertidal killifish that can breathe air and locomote on land. Our goals were to characterize the terrestrial locomotion of mummichogs and determine their method of navigation towards water in a terrestrial environment. We used high-speed video to record behavior during stranding experiments and found that mummichogs use a tail-flip jump to move overland, similarly to other Cyprinodontiformes. However, mummichogs also prop themselves upright into a prone position between each jump, a previously undescribed behavior. After becoming prone, mummichogs rotate about their vertical axis, directing the caudal fin towards the water. Then, they roll back onto their lateral aspect and use a tail-flip behavior to leap into a caudally-directed, ballistic flight path. We conducted experiments to determine the sensory stimulus used to locate a body of water by placing mummichogs on a square platform with one side adjacent to a sea table. Under artificial light, mummichogs moved towards the sea table with a higher frequency than towards the other sides. Under dark conditions, mummichogs did not show a preference for moving towards the sea table. When the surface of the water was covered with reflective foil, mummichogs moved towards it as if it were a body of water. These results suggest that mummichogs primarily use visual cues, specifically reflected light, to orient towards the water. The uprighting behavior that mummichogs perform between terrestrial jumps may provide an opportunity for these fish to receive visual information that allows them to safely return to the water.",
author = "Bressman, {Noah R.} and Farina, {Stacy C.} and Gibb, {Alice C}",
year = "2016",
month = "1",
day = "1",
doi = "10.1002/jez.1996",
language = "English (US)",
volume = "325",
pages = "57--64",
journal = "Journal of Experimental Zoology Part A: Ecological Genetics and Physiology",
issn = "1932-5223",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - Look before you leap

T2 - Visual navigation and terrestrial locomotion of the intertidal killifish Fundulus heteroclitus

AU - Bressman, Noah R.

AU - Farina, Stacy C.

AU - Gibb, Alice C

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Mummichogs (Fundulus heteroclitus; Cyprinodontiformes) are intertidal killifish that can breathe air and locomote on land. Our goals were to characterize the terrestrial locomotion of mummichogs and determine their method of navigation towards water in a terrestrial environment. We used high-speed video to record behavior during stranding experiments and found that mummichogs use a tail-flip jump to move overland, similarly to other Cyprinodontiformes. However, mummichogs also prop themselves upright into a prone position between each jump, a previously undescribed behavior. After becoming prone, mummichogs rotate about their vertical axis, directing the caudal fin towards the water. Then, they roll back onto their lateral aspect and use a tail-flip behavior to leap into a caudally-directed, ballistic flight path. We conducted experiments to determine the sensory stimulus used to locate a body of water by placing mummichogs on a square platform with one side adjacent to a sea table. Under artificial light, mummichogs moved towards the sea table with a higher frequency than towards the other sides. Under dark conditions, mummichogs did not show a preference for moving towards the sea table. When the surface of the water was covered with reflective foil, mummichogs moved towards it as if it were a body of water. These results suggest that mummichogs primarily use visual cues, specifically reflected light, to orient towards the water. The uprighting behavior that mummichogs perform between terrestrial jumps may provide an opportunity for these fish to receive visual information that allows them to safely return to the water.

AB - Mummichogs (Fundulus heteroclitus; Cyprinodontiformes) are intertidal killifish that can breathe air and locomote on land. Our goals were to characterize the terrestrial locomotion of mummichogs and determine their method of navigation towards water in a terrestrial environment. We used high-speed video to record behavior during stranding experiments and found that mummichogs use a tail-flip jump to move overland, similarly to other Cyprinodontiformes. However, mummichogs also prop themselves upright into a prone position between each jump, a previously undescribed behavior. After becoming prone, mummichogs rotate about their vertical axis, directing the caudal fin towards the water. Then, they roll back onto their lateral aspect and use a tail-flip behavior to leap into a caudally-directed, ballistic flight path. We conducted experiments to determine the sensory stimulus used to locate a body of water by placing mummichogs on a square platform with one side adjacent to a sea table. Under artificial light, mummichogs moved towards the sea table with a higher frequency than towards the other sides. Under dark conditions, mummichogs did not show a preference for moving towards the sea table. When the surface of the water was covered with reflective foil, mummichogs moved towards it as if it were a body of water. These results suggest that mummichogs primarily use visual cues, specifically reflected light, to orient towards the water. The uprighting behavior that mummichogs perform between terrestrial jumps may provide an opportunity for these fish to receive visual information that allows them to safely return to the water.

UR - http://www.scopus.com/inward/record.url?scp=84954376816&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84954376816&partnerID=8YFLogxK

U2 - 10.1002/jez.1996

DO - 10.1002/jez.1996

M3 - Article

C2 - 26537331

AN - SCOPUS:84954376816

VL - 325

SP - 57

EP - 64

JO - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

JF - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

SN - 1932-5223

IS - 1

ER -