Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems

Roderic A Parnell, Kelly J. Burke

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations (< 2000 m) and greater distances from the active vent (> 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these soils have undergone significant acid loading. While the deposition of the region is acidified by hydrogen chloride, the streams flowing off the volcano are apparently acidified by sulfuric acid in thermal waters discharging into the streams. The acidity of these streams decreases downstream, while the silica concentrations increase downstream. The composition of stream water is most influenced by thermal-water discharges as well as equilibrium dissolution of amorphous silica glass and non-equilibrium leaching of unweathered ash. The impacts of acid gases and thermal water released from the volcano appear to be restricted to ecosystems on the slope of the volcano. The only impact of Nevado del Ruiz on surrounding coffee plantations appears to be potassium leaching of coffee leaves from occasional acid-deposition events.

Original languageEnglish (US)
Pages (from-to)69-88
Number of pages20
JournalJournal of Volcanology and Geothermal Research
Volume42
Issue number1-2
DOIs
StatePublished - Jul 30 1990

Fingerprint

Colombia
Aquatic ecosystems
Volcanoes
ecosystems
terrestrial ecosystem
coffee
volcanoes
aquatic ecosystem
Coffee
volcano
acids
Acids
acid
soils
plantation
thermal water
Soils
leaves
chloride
hydrogen chlorides

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences(all)
  • Environmental Science(all)

Cite this

Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems. / Parnell, Roderic A; Burke, Kelly J.

In: Journal of Volcanology and Geothermal Research, Vol. 42, No. 1-2, 30.07.1990, p. 69-88.

Research output: Contribution to journalArticle

@article{7bb678a32ead438fb6f3958783884b13,
title = "Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems",
abstract = "Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations (< 2000 m) and greater distances from the active vent (> 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these soils have undergone significant acid loading. While the deposition of the region is acidified by hydrogen chloride, the streams flowing off the volcano are apparently acidified by sulfuric acid in thermal waters discharging into the streams. The acidity of these streams decreases downstream, while the silica concentrations increase downstream. The composition of stream water is most influenced by thermal-water discharges as well as equilibrium dissolution of amorphous silica glass and non-equilibrium leaching of unweathered ash. The impacts of acid gases and thermal water released from the volcano appear to be restricted to ecosystems on the slope of the volcano. The only impact of Nevado del Ruiz on surrounding coffee plantations appears to be potassium leaching of coffee leaves from occasional acid-deposition events.",
author = "Parnell, {Roderic A} and Burke, {Kelly J.}",
year = "1990",
month = "7",
day = "30",
doi = "10.1016/0377-0273(90)90070-V",
language = "English (US)",
volume = "42",
pages = "69--88",
journal = "Journal of Volcanology and Geothermal Research",
issn = "0377-0273",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems

AU - Parnell, Roderic A

AU - Burke, Kelly J.

PY - 1990/7/30

Y1 - 1990/7/30

N2 - Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations (< 2000 m) and greater distances from the active vent (> 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these soils have undergone significant acid loading. While the deposition of the region is acidified by hydrogen chloride, the streams flowing off the volcano are apparently acidified by sulfuric acid in thermal waters discharging into the streams. The acidity of these streams decreases downstream, while the silica concentrations increase downstream. The composition of stream water is most influenced by thermal-water discharges as well as equilibrium dissolution of amorphous silica glass and non-equilibrium leaching of unweathered ash. The impacts of acid gases and thermal water released from the volcano appear to be restricted to ecosystems on the slope of the volcano. The only impact of Nevado del Ruiz on surrounding coffee plantations appears to be potassium leaching of coffee leaves from occasional acid-deposition events.

AB - Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations (< 2000 m) and greater distances from the active vent (> 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these soils have undergone significant acid loading. While the deposition of the region is acidified by hydrogen chloride, the streams flowing off the volcano are apparently acidified by sulfuric acid in thermal waters discharging into the streams. The acidity of these streams decreases downstream, while the silica concentrations increase downstream. The composition of stream water is most influenced by thermal-water discharges as well as equilibrium dissolution of amorphous silica glass and non-equilibrium leaching of unweathered ash. The impacts of acid gases and thermal water released from the volcano appear to be restricted to ecosystems on the slope of the volcano. The only impact of Nevado del Ruiz on surrounding coffee plantations appears to be potassium leaching of coffee leaves from occasional acid-deposition events.

UR - http://www.scopus.com/inward/record.url?scp=0025603563&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025603563&partnerID=8YFLogxK

U2 - 10.1016/0377-0273(90)90070-V

DO - 10.1016/0377-0273(90)90070-V

M3 - Article

VL - 42

SP - 69

EP - 88

JO - Journal of Volcanology and Geothermal Research

JF - Journal of Volcanology and Geothermal Research

SN - 0377-0273

IS - 1-2

ER -