How close are we to the temperature tipping point of the terrestrial biosphere?

Katharyn A. Duffy, Christopher R. Schwalm, Vickery L. Arcus, George W. Koch, Liyin L. Liang, Louis A. Schipper

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The temperature dependence of global photosynthesis and respiration determine land carbon sink strength. While the land sink currently mitigates ~30% of anthropogenic carbon emissions, it is unclear whether this ecosystem service will persist and, more specifically, what hard temperature limits, if any, regulate carbon uptake. Here, we use the largest continuous carbon flux monitoring network to construct the first observationally derived temperature response curves for global land carbon uptake. We show that the mean temperature of the warmest quarter (3-month period) passed the thermal maximum for photosynthesis during the past decade. At higher temperatures, respiration rates continue to rise in contrast to sharply declining rates of photosynthesis. Under business-as-usual emissions, this divergence elicits a near halving of the land sink strength by as early as 2040.

Original languageEnglish (US)
Article numbereaay1052
JournalScience Advances
Volume7
Issue number3
DOIs
StatePublished - Jan 13 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'How close are we to the temperature tipping point of the terrestrial biosphere?'. Together they form a unique fingerprint.

Cite this