Holocene storminess inferred from sediments of two lakes on Adak Island, Alaska

Anne C L Krawiec, Darrell S Kaufman

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The abundance of sedimentary organic material from two lakes was used to infer past Holocene storminess on Adak Island where frequent storms generate abundant rainfall and extensive cloud cover. Andrew and Heart Lakes are located 10 km apart; their contrasting physical characteristics cause the sedimentary organic matter to respond differently to storms. Their records were synchronized using correlated tephra beds. Sedimentation rates increased between 4.0 and 3.5 ka in both lakes. Over the instrumental period, Andrew Lake biogenic-silica content (BSi) is most strongly correlated with winter sunlight availability, which influences photosynthetic production, and river input, which influences the dilution of BSi by mineral matter. Heart Lake BSi is likely affected by wind-driven remobilization of sediment, as suggested by correlations among BSi, the North Pacific Index, and winter storminess. The results indicate relatively stormy conditions from 9.6 to 4.0 ka, followed by drying between 4.0 and 2.7 ka, with the driest conditions from 2.7 to 1.5 ka. The stormiest period was between AD 500 and 1200, then drying from 1150 to 1500 and more variable until 1850. This record of Holocene storminess fills a major gap at the center of action for North Pacific wintertime climate.

Original languageEnglish (US)
Pages (from-to)73-84
Number of pages12
JournalQuaternary Research
Volume82
Issue number1
DOIs
StatePublished - 2014

Fingerprint

Holocene
silica
lake
sediment
winter
remobilization
tephra
cloud cover
sedimentation rate
dilution
Silica
Sediment
organic matter
rainfall
climate
river
Winter
Drying
drying
Climate

Keywords

  • Adak Island
  • Biogenic silica
  • Holocene storminess
  • Inferred chlorophyll-a
  • Lake sediments

ASJC Scopus subject areas

  • Earth-Surface Processes
  • Earth and Planetary Sciences(all)
  • Arts and Humanities (miscellaneous)

Cite this

Holocene storminess inferred from sediments of two lakes on Adak Island, Alaska. / Krawiec, Anne C L; Kaufman, Darrell S.

In: Quaternary Research, Vol. 82, No. 1, 2014, p. 73-84.

Research output: Contribution to journalArticle

@article{0d5b37df85ed4bfca80bec5f048e07db,
title = "Holocene storminess inferred from sediments of two lakes on Adak Island, Alaska",
abstract = "The abundance of sedimentary organic material from two lakes was used to infer past Holocene storminess on Adak Island where frequent storms generate abundant rainfall and extensive cloud cover. Andrew and Heart Lakes are located 10 km apart; their contrasting physical characteristics cause the sedimentary organic matter to respond differently to storms. Their records were synchronized using correlated tephra beds. Sedimentation rates increased between 4.0 and 3.5 ka in both lakes. Over the instrumental period, Andrew Lake biogenic-silica content (BSi) is most strongly correlated with winter sunlight availability, which influences photosynthetic production, and river input, which influences the dilution of BSi by mineral matter. Heart Lake BSi is likely affected by wind-driven remobilization of sediment, as suggested by correlations among BSi, the North Pacific Index, and winter storminess. The results indicate relatively stormy conditions from 9.6 to 4.0 ka, followed by drying between 4.0 and 2.7 ka, with the driest conditions from 2.7 to 1.5 ka. The stormiest period was between AD 500 and 1200, then drying from 1150 to 1500 and more variable until 1850. This record of Holocene storminess fills a major gap at the center of action for North Pacific wintertime climate.",
keywords = "Adak Island, Biogenic silica, Holocene storminess, Inferred chlorophyll-a, Lake sediments",
author = "Krawiec, {Anne C L} and Kaufman, {Darrell S}",
year = "2014",
doi = "10.1016/j.yqres.2014.02.007",
language = "English (US)",
volume = "82",
pages = "73--84",
journal = "Quaternary Research",
issn = "0033-5894",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Holocene storminess inferred from sediments of two lakes on Adak Island, Alaska

AU - Krawiec, Anne C L

AU - Kaufman, Darrell S

PY - 2014

Y1 - 2014

N2 - The abundance of sedimentary organic material from two lakes was used to infer past Holocene storminess on Adak Island where frequent storms generate abundant rainfall and extensive cloud cover. Andrew and Heart Lakes are located 10 km apart; their contrasting physical characteristics cause the sedimentary organic matter to respond differently to storms. Their records were synchronized using correlated tephra beds. Sedimentation rates increased between 4.0 and 3.5 ka in both lakes. Over the instrumental period, Andrew Lake biogenic-silica content (BSi) is most strongly correlated with winter sunlight availability, which influences photosynthetic production, and river input, which influences the dilution of BSi by mineral matter. Heart Lake BSi is likely affected by wind-driven remobilization of sediment, as suggested by correlations among BSi, the North Pacific Index, and winter storminess. The results indicate relatively stormy conditions from 9.6 to 4.0 ka, followed by drying between 4.0 and 2.7 ka, with the driest conditions from 2.7 to 1.5 ka. The stormiest period was between AD 500 and 1200, then drying from 1150 to 1500 and more variable until 1850. This record of Holocene storminess fills a major gap at the center of action for North Pacific wintertime climate.

AB - The abundance of sedimentary organic material from two lakes was used to infer past Holocene storminess on Adak Island where frequent storms generate abundant rainfall and extensive cloud cover. Andrew and Heart Lakes are located 10 km apart; their contrasting physical characteristics cause the sedimentary organic matter to respond differently to storms. Their records were synchronized using correlated tephra beds. Sedimentation rates increased between 4.0 and 3.5 ka in both lakes. Over the instrumental period, Andrew Lake biogenic-silica content (BSi) is most strongly correlated with winter sunlight availability, which influences photosynthetic production, and river input, which influences the dilution of BSi by mineral matter. Heart Lake BSi is likely affected by wind-driven remobilization of sediment, as suggested by correlations among BSi, the North Pacific Index, and winter storminess. The results indicate relatively stormy conditions from 9.6 to 4.0 ka, followed by drying between 4.0 and 2.7 ka, with the driest conditions from 2.7 to 1.5 ka. The stormiest period was between AD 500 and 1200, then drying from 1150 to 1500 and more variable until 1850. This record of Holocene storminess fills a major gap at the center of action for North Pacific wintertime climate.

KW - Adak Island

KW - Biogenic silica

KW - Holocene storminess

KW - Inferred chlorophyll-a

KW - Lake sediments

UR - http://www.scopus.com/inward/record.url?scp=84904071650&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904071650&partnerID=8YFLogxK

U2 - 10.1016/j.yqres.2014.02.007

DO - 10.1016/j.yqres.2014.02.007

M3 - Article

VL - 82

SP - 73

EP - 84

JO - Quaternary Research

JF - Quaternary Research

SN - 0033-5894

IS - 1

ER -