Abstract
Analysis of Fourier heat conduction in heterogeneous and bi-composite media (e.g. porous media, fluid suspensions, etc.) subject to Lack of Local Thermal Equilibrium (LaLotheq) reveals a condition for thermal oscillations and resonance to be possible. This paper shows that this condition cannot be fulfilled because of physical constraints leading to the exclusion of thermal waves and resonance.
Original language | English (US) |
---|---|
Pages (from-to) | 4886-4892 |
Number of pages | 7 |
Journal | International Journal of Heat and Mass Transfer |
Volume | 49 |
Issue number | 25-26 |
DOIs | |
State | Published - Dec 2006 |
Fingerprint
Keywords
- Bi-composite media
- Heterogeneous media
- LaLotheq
- Local thermal equilibrium
- Local thermal non-equilibrium
- Lotheq
- Porous media conduction
- Thermal waves
ASJC Scopus subject areas
- Fluid Flow and Transfer Processes
- Energy(all)
- Mechanical Engineering
Cite this
Exclusion of oscillations in heterogeneous and bi-composite media thermal conduction. / Vadasz, Peter.
In: International Journal of Heat and Mass Transfer, Vol. 49, No. 25-26, 12.2006, p. 4886-4892.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Exclusion of oscillations in heterogeneous and bi-composite media thermal conduction
AU - Vadasz, Peter
PY - 2006/12
Y1 - 2006/12
N2 - Analysis of Fourier heat conduction in heterogeneous and bi-composite media (e.g. porous media, fluid suspensions, etc.) subject to Lack of Local Thermal Equilibrium (LaLotheq) reveals a condition for thermal oscillations and resonance to be possible. This paper shows that this condition cannot be fulfilled because of physical constraints leading to the exclusion of thermal waves and resonance.
AB - Analysis of Fourier heat conduction in heterogeneous and bi-composite media (e.g. porous media, fluid suspensions, etc.) subject to Lack of Local Thermal Equilibrium (LaLotheq) reveals a condition for thermal oscillations and resonance to be possible. This paper shows that this condition cannot be fulfilled because of physical constraints leading to the exclusion of thermal waves and resonance.
KW - Bi-composite media
KW - Heterogeneous media
KW - LaLotheq
KW - Local thermal equilibrium
KW - Local thermal non-equilibrium
KW - Lotheq
KW - Porous media conduction
KW - Thermal waves
UR - http://www.scopus.com/inward/record.url?scp=33750326686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750326686&partnerID=8YFLogxK
U2 - 10.1016/j.ijheatmasstransfer.2006.05.034
DO - 10.1016/j.ijheatmasstransfer.2006.05.034
M3 - Article
AN - SCOPUS:33750326686
VL - 49
SP - 4886
EP - 4892
JO - International Journal of Heat and Mass Transfer
JF - International Journal of Heat and Mass Transfer
SN - 0017-9310
IS - 25-26
ER -