Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation

G. A. Unguez, S. Bodine-Fowler, R. R. Roy, David J Pierotti, V. R. Edgerto

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

1. The mechanical, morphological and biochemical properties of single motor units from the anterior compartment of the tibialis anterior muscle in adult cats were studied six months after the nerve branches to that compartment were cut and resutured in close proximity to the muscle. 2. In these self-reinnervated muscles, the maximum tetanic tensions were lower in slow than fast units, a relationship similar to that observed among motor units from control adult muscles. The maximum tetanic tensions produced by the fast units were larger than those produced by the same motor unit types in control muscles. Direct counts of muscle fibres belonging to a motor unit showed that factors controlling the number of muscle fibres innervated by a motoneurone type persist during the reinnervation process in that fast motoneurones reinnervated more muscle fibres than slow motoneurones. Thus, the number of muscle fibres reinnervated by a motoneurone principally accounted for the difference in the maximum tension outputs among motor unit types, a relationship similar to that observed in control tibialis anterior muscles. 3. Monoclonal antibodies for specific myosin heavy chains were used to differentiate fibre types. By this criterion, motor units from control muscles were found to contain a homogeneous fibre type composition. In contrast, a heterogeneous, yet markedly biased, fibre type composition was observed in each unit analysed from self-reinnervated muscles. 4. Although not all of the muscle fibres of a motor unit developed the same type-associated parameters after reinnervation, the relationships among myosin heavy chain profile, succinate dehydrogenase activity and the fibre size were similar in fibres of control and self-reinnervated muscles. 5. The processes which dictate both motor unit size and the matching between motoneurone and muscle fibre type during the reinnervation process must be interdependent and result from a hierarchy of decisions which reflects their relative importance. The mechanisms responsible for these two processes may be a combination of: (1) selective innervation which may or may not incorporate a pruning process if multiple synaptic connections are initially formed and/or (2) conversion of enough fibres of a motor unit to form a predominant type.

Original languageEnglish (US)
Pages (from-to)103-125
Number of pages23
JournalJournal of Physiology
Volume472
StatePublished - 1993
Externally publishedYes

Fingerprint

Cats
Muscles
Motor Neurons
Myosin Heavy Chains
Succinate Dehydrogenase
Monoclonal Antibodies

ASJC Scopus subject areas

  • Physiology

Cite this

Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation. / Unguez, G. A.; Bodine-Fowler, S.; Roy, R. R.; Pierotti, David J; Edgerto, V. R.

In: Journal of Physiology, Vol. 472, 1993, p. 103-125.

Research output: Contribution to journalArticle

Unguez, G. A. ; Bodine-Fowler, S. ; Roy, R. R. ; Pierotti, David J ; Edgerto, V. R. / Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation. In: Journal of Physiology. 1993 ; Vol. 472. pp. 103-125.
@article{13dd6baa972d4e4db1ad5885a733543d,
title = "Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation",
abstract = "1. The mechanical, morphological and biochemical properties of single motor units from the anterior compartment of the tibialis anterior muscle in adult cats were studied six months after the nerve branches to that compartment were cut and resutured in close proximity to the muscle. 2. In these self-reinnervated muscles, the maximum tetanic tensions were lower in slow than fast units, a relationship similar to that observed among motor units from control adult muscles. The maximum tetanic tensions produced by the fast units were larger than those produced by the same motor unit types in control muscles. Direct counts of muscle fibres belonging to a motor unit showed that factors controlling the number of muscle fibres innervated by a motoneurone type persist during the reinnervation process in that fast motoneurones reinnervated more muscle fibres than slow motoneurones. Thus, the number of muscle fibres reinnervated by a motoneurone principally accounted for the difference in the maximum tension outputs among motor unit types, a relationship similar to that observed in control tibialis anterior muscles. 3. Monoclonal antibodies for specific myosin heavy chains were used to differentiate fibre types. By this criterion, motor units from control muscles were found to contain a homogeneous fibre type composition. In contrast, a heterogeneous, yet markedly biased, fibre type composition was observed in each unit analysed from self-reinnervated muscles. 4. Although not all of the muscle fibres of a motor unit developed the same type-associated parameters after reinnervation, the relationships among myosin heavy chain profile, succinate dehydrogenase activity and the fibre size were similar in fibres of control and self-reinnervated muscles. 5. The processes which dictate both motor unit size and the matching between motoneurone and muscle fibre type during the reinnervation process must be interdependent and result from a hierarchy of decisions which reflects their relative importance. The mechanisms responsible for these two processes may be a combination of: (1) selective innervation which may or may not incorporate a pruning process if multiple synaptic connections are initially formed and/or (2) conversion of enough fibres of a motor unit to form a predominant type.",
author = "Unguez, {G. A.} and S. Bodine-Fowler and Roy, {R. R.} and Pierotti, {David J} and Edgerto, {V. R.}",
year = "1993",
language = "English (US)",
volume = "472",
pages = "103--125",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation

AU - Unguez, G. A.

AU - Bodine-Fowler, S.

AU - Roy, R. R.

AU - Pierotti, David J

AU - Edgerto, V. R.

PY - 1993

Y1 - 1993

N2 - 1. The mechanical, morphological and biochemical properties of single motor units from the anterior compartment of the tibialis anterior muscle in adult cats were studied six months after the nerve branches to that compartment were cut and resutured in close proximity to the muscle. 2. In these self-reinnervated muscles, the maximum tetanic tensions were lower in slow than fast units, a relationship similar to that observed among motor units from control adult muscles. The maximum tetanic tensions produced by the fast units were larger than those produced by the same motor unit types in control muscles. Direct counts of muscle fibres belonging to a motor unit showed that factors controlling the number of muscle fibres innervated by a motoneurone type persist during the reinnervation process in that fast motoneurones reinnervated more muscle fibres than slow motoneurones. Thus, the number of muscle fibres reinnervated by a motoneurone principally accounted for the difference in the maximum tension outputs among motor unit types, a relationship similar to that observed in control tibialis anterior muscles. 3. Monoclonal antibodies for specific myosin heavy chains were used to differentiate fibre types. By this criterion, motor units from control muscles were found to contain a homogeneous fibre type composition. In contrast, a heterogeneous, yet markedly biased, fibre type composition was observed in each unit analysed from self-reinnervated muscles. 4. Although not all of the muscle fibres of a motor unit developed the same type-associated parameters after reinnervation, the relationships among myosin heavy chain profile, succinate dehydrogenase activity and the fibre size were similar in fibres of control and self-reinnervated muscles. 5. The processes which dictate both motor unit size and the matching between motoneurone and muscle fibre type during the reinnervation process must be interdependent and result from a hierarchy of decisions which reflects their relative importance. The mechanisms responsible for these two processes may be a combination of: (1) selective innervation which may or may not incorporate a pruning process if multiple synaptic connections are initially formed and/or (2) conversion of enough fibres of a motor unit to form a predominant type.

AB - 1. The mechanical, morphological and biochemical properties of single motor units from the anterior compartment of the tibialis anterior muscle in adult cats were studied six months after the nerve branches to that compartment were cut and resutured in close proximity to the muscle. 2. In these self-reinnervated muscles, the maximum tetanic tensions were lower in slow than fast units, a relationship similar to that observed among motor units from control adult muscles. The maximum tetanic tensions produced by the fast units were larger than those produced by the same motor unit types in control muscles. Direct counts of muscle fibres belonging to a motor unit showed that factors controlling the number of muscle fibres innervated by a motoneurone type persist during the reinnervation process in that fast motoneurones reinnervated more muscle fibres than slow motoneurones. Thus, the number of muscle fibres reinnervated by a motoneurone principally accounted for the difference in the maximum tension outputs among motor unit types, a relationship similar to that observed in control tibialis anterior muscles. 3. Monoclonal antibodies for specific myosin heavy chains were used to differentiate fibre types. By this criterion, motor units from control muscles were found to contain a homogeneous fibre type composition. In contrast, a heterogeneous, yet markedly biased, fibre type composition was observed in each unit analysed from self-reinnervated muscles. 4. Although not all of the muscle fibres of a motor unit developed the same type-associated parameters after reinnervation, the relationships among myosin heavy chain profile, succinate dehydrogenase activity and the fibre size were similar in fibres of control and self-reinnervated muscles. 5. The processes which dictate both motor unit size and the matching between motoneurone and muscle fibre type during the reinnervation process must be interdependent and result from a hierarchy of decisions which reflects their relative importance. The mechanisms responsible for these two processes may be a combination of: (1) selective innervation which may or may not incorporate a pruning process if multiple synaptic connections are initially formed and/or (2) conversion of enough fibres of a motor unit to form a predominant type.

UR - http://www.scopus.com/inward/record.url?scp=0027756794&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027756794&partnerID=8YFLogxK

M3 - Article

VL - 472

SP - 103

EP - 125

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

ER -