Evaluating sentiment in financial news articles

Robert P. Schumaker, Yulei Zhang, Chun Neng Huang, Hsinchun Chen

Research output: Contribution to journalArticle

135 Scopus citations

Abstract

Can the choice of words and tone used by the authors of financial news articles correlate to measurable stock price movements? If so, can the magnitude of price movement be predicted using these same variables? We investigate these questions using the Arizona Financial Text (AZFinText) system, a financial news article prediction system, and pair it with a sentiment analysis tool. Through our analysis, we found that subjective news articles were easier to predict in price direction (59.0% versus 50.0% of chance alone) and using a simple trading engine, subjective articles garnered a 3.30% return. Looking further into the role of author tone in financial news articles, we found that articles with a negative sentiment were easiest to predict in price direction (50.9% versus 50.0% of chance alone) and a 3.04% trading return. Investigating negative sentiment further, we found that our system was able to predict price decreases in articles of a positive sentiment 53.5% of the time, and price increases in articles of a negative sentiment 52.4% of the time. We believe that perhaps this result can be attributable to market traders behaving in a contrarian manner, e.g., see good news, sell; see bad news, buy.

Original languageEnglish (US)
Pages (from-to)458-464
Number of pages7
JournalDecision Support Systems
Volume53
Issue number3
DOIs
StatePublished - Jun 1 2012

    Fingerprint

Keywords

  • Business intelligence
  • Financial prediction
  • Sentiment analysis
  • Text mining

ASJC Scopus subject areas

  • Management Information Systems
  • Information Systems
  • Developmental and Educational Psychology
  • Arts and Humanities (miscellaneous)
  • Information Systems and Management

Cite this