Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.

Zhong Chen, Thomas E Kolb, Karen M. Clancy

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50% of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.

Original languageEnglish (US)
Pages (from-to)587-594
Number of pages8
JournalJournal of Economic Entomology
Volume95
Issue number3
StatePublished - Jun 2002

Fingerprint

Choristoneura occidentalis
biomass allocation
Tortricidae
defoliation
dry matter partitioning
Pseudotsuga menziesii
Lepidoptera
seedling
seedlings
root-shoot ratio
clipping
biomass
root shoot ratio
bud
effect
phenotype
shoot
buds
insect
insects

ASJC Scopus subject areas

  • Insect Science

Cite this

@article{f110b24633fd4db3a078eee4544ef53f,
title = "Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.",
abstract = "Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50{\%} of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.",
author = "Zhong Chen and Kolb, {Thomas E} and Clancy, {Karen M.}",
year = "2002",
month = "6",
language = "English (US)",
volume = "95",
pages = "587--594",
journal = "Journal of Economic Entomology",
issn = "0022-0493",
publisher = "Entomological Society of America",
number = "3",

}

TY - JOUR

T1 - Effects of artificial and western spruce budworm (Lepidoptera

T2 - Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.

AU - Chen, Zhong

AU - Kolb, Thomas E

AU - Clancy, Karen M.

PY - 2002/6

Y1 - 2002/6

N2 - Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50% of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.

AB - Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50% of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.

UR - http://www.scopus.com/inward/record.url?scp=0036598145&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036598145&partnerID=8YFLogxK

M3 - Article

C2 - 12076004

AN - SCOPUS:0036598145

VL - 95

SP - 587

EP - 594

JO - Journal of Economic Entomology

JF - Journal of Economic Entomology

SN - 0022-0493

IS - 3

ER -