Dyck's map (3, 7)8 is a counterexample to a clique covering conjecture

Research output: Contribution to journalArticle

Abstract

Let c(G) denote the minimum number of cliques necessary to cover all edges of a graph G. A counterexample is provided to a conjecture communicated by P. Erdo{combining double acute accent}s. If c(G - e) < c(G) for every edge e, then G contains no triangles.

Original languageEnglish (US)
Pages (from-to)157-160
Number of pages4
JournalJournal of Combinatorial Theory. Series B
Volume54
Issue number1
DOIs
StatePublished - 1992

Fingerprint

Clique
Acute
Counterexample
Triangle
Covering
Cover
Denote
Necessary
Graph in graph theory

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Dyck's map (3, 7)8 is a counterexample to a clique covering conjecture. / Vince, A.; Wilson, Stephen E.

In: Journal of Combinatorial Theory. Series B, Vol. 54, No. 1, 1992, p. 157-160.

Research output: Contribution to journalArticle

@article{c2cfb129e6f84ebca863a09d698ee60f,
title = "Dyck's map (3, 7)8 is a counterexample to a clique covering conjecture",
abstract = "Let c(G) denote the minimum number of cliques necessary to cover all edges of a graph G. A counterexample is provided to a conjecture communicated by P. Erdo{combining double acute accent}s. If c(G - e) < c(G) for every edge e, then G contains no triangles.",
author = "A. Vince and Wilson, {Stephen E}",
year = "1992",
doi = "10.1016/0095-8956(92)90074-8",
language = "English (US)",
volume = "54",
pages = "157--160",
journal = "Journal of Combinatorial Theory. Series B",
issn = "0095-8956",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Dyck's map (3, 7)8 is a counterexample to a clique covering conjecture

AU - Vince, A.

AU - Wilson, Stephen E

PY - 1992

Y1 - 1992

N2 - Let c(G) denote the minimum number of cliques necessary to cover all edges of a graph G. A counterexample is provided to a conjecture communicated by P. Erdo{combining double acute accent}s. If c(G - e) < c(G) for every edge e, then G contains no triangles.

AB - Let c(G) denote the minimum number of cliques necessary to cover all edges of a graph G. A counterexample is provided to a conjecture communicated by P. Erdo{combining double acute accent}s. If c(G - e) < c(G) for every edge e, then G contains no triangles.

UR - http://www.scopus.com/inward/record.url?scp=44049124848&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44049124848&partnerID=8YFLogxK

U2 - 10.1016/0095-8956(92)90074-8

DO - 10.1016/0095-8956(92)90074-8

M3 - Article

VL - 54

SP - 157

EP - 160

JO - Journal of Combinatorial Theory. Series B

JF - Journal of Combinatorial Theory. Series B

SN - 0095-8956

IS - 1

ER -