Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating

Implications for the tectonic history of the Eastern Cordillera, Colombia

Joel E Saylor, Daniel F. Stockli, Brian K. Horton, Junsheng Nie, Andrés Mora

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Lag time is the difference between the closure age of a thermochronologic system and the depositional age of host strata. Lag-time analysis of sedimentary basin fill provides insight into the exhumation history of adjacent eroded orogens. In a case study of the Paleogene Floresta basin in the Eastern Cordillera fold-thrust belt of Colombia, variations in lag time reflect changes in both sediment source areas and exhumation patterns. However, near-zero lag times can be produced by either syndepositional volcanism or rapid exhumation. We applied U-Pb geochronology and (U-Th)/He (ZHe) thermochronology to individual zircon grains and identified zircons of volcanic origin as those for which the U-Pb age is within the 2σ uncertainty of their ZHe age. Consistent discrimination of young ZHe ages as the products of either rapid exhumation or volcanism reveals three stages in the history of the northern Andean hinterland. (1) Early to late Paleocene: The appearance of syndepositional and Mesozoic volcanic zircons marks the initial influx of magmatic arc detritus. (2) Middle to late Eocene: Near-zero lag times point to rapid, regionally extensive exhumation attributable to thrust-induced uplift of the Magdalena Valley basement. (3) Late Eocene to late Oligocene: Increased lag time is interpreted as recycling of shallowly buried foreland-basin strata possibly due to movement on basinbounding thrust systems. The presence of volcanic zircons with ZHe ages younger than or indistinguishable from the youngest exhumationally cooled zircons underscores the need for double dating to reliably identify volcanic influence in detrital thermochronology datasets. These data highlight the utility of double-dated ZHe results for extracting tectonic histories and reliably excluding volcanic zircons from lag-time analysis.

Original languageEnglish (US)
Pages (from-to)762-779
Number of pages18
JournalBulletin of the Geological Society of America
Volume124
Issue number5-6
DOIs
StatePublished - May 2012
Externally publishedYes

Fingerprint

cordillera
exhumation
volcanism
zircon
tectonics
history
thermochronology
thrust
Eocene
basin fill
foreland basin
dating
geochronology
Paleogene
sedimentary basin
Paleocene
detritus
Oligocene
recycling
uplift

ASJC Scopus subject areas

  • Geology

Cite this

Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating : Implications for the tectonic history of the Eastern Cordillera, Colombia. / Saylor, Joel E; Stockli, Daniel F.; Horton, Brian K.; Nie, Junsheng; Mora, Andrés.

In: Bulletin of the Geological Society of America, Vol. 124, No. 5-6, 05.2012, p. 762-779.

Research output: Contribution to journalArticle

@article{b50b6347e43846958018d3036ab827ef,
title = "Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia",
abstract = "Lag time is the difference between the closure age of a thermochronologic system and the depositional age of host strata. Lag-time analysis of sedimentary basin fill provides insight into the exhumation history of adjacent eroded orogens. In a case study of the Paleogene Floresta basin in the Eastern Cordillera fold-thrust belt of Colombia, variations in lag time reflect changes in both sediment source areas and exhumation patterns. However, near-zero lag times can be produced by either syndepositional volcanism or rapid exhumation. We applied U-Pb geochronology and (U-Th)/He (ZHe) thermochronology to individual zircon grains and identified zircons of volcanic origin as those for which the U-Pb age is within the 2σ uncertainty of their ZHe age. Consistent discrimination of young ZHe ages as the products of either rapid exhumation or volcanism reveals three stages in the history of the northern Andean hinterland. (1) Early to late Paleocene: The appearance of syndepositional and Mesozoic volcanic zircons marks the initial influx of magmatic arc detritus. (2) Middle to late Eocene: Near-zero lag times point to rapid, regionally extensive exhumation attributable to thrust-induced uplift of the Magdalena Valley basement. (3) Late Eocene to late Oligocene: Increased lag time is interpreted as recycling of shallowly buried foreland-basin strata possibly due to movement on basinbounding thrust systems. The presence of volcanic zircons with ZHe ages younger than or indistinguishable from the youngest exhumationally cooled zircons underscores the need for double dating to reliably identify volcanic influence in detrital thermochronology datasets. These data highlight the utility of double-dated ZHe results for extracting tectonic histories and reliably excluding volcanic zircons from lag-time analysis.",
author = "Saylor, {Joel E} and Stockli, {Daniel F.} and Horton, {Brian K.} and Junsheng Nie and Andr{\'e}s Mora",
year = "2012",
month = "5",
doi = "10.1130/B30534.1",
language = "English (US)",
volume = "124",
pages = "762--779",
journal = "Geological Society of America Bulletin",
issn = "0016-7606",
publisher = "Geological Society of America",
number = "5-6",

}

TY - JOUR

T1 - Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating

T2 - Implications for the tectonic history of the Eastern Cordillera, Colombia

AU - Saylor, Joel E

AU - Stockli, Daniel F.

AU - Horton, Brian K.

AU - Nie, Junsheng

AU - Mora, Andrés

PY - 2012/5

Y1 - 2012/5

N2 - Lag time is the difference between the closure age of a thermochronologic system and the depositional age of host strata. Lag-time analysis of sedimentary basin fill provides insight into the exhumation history of adjacent eroded orogens. In a case study of the Paleogene Floresta basin in the Eastern Cordillera fold-thrust belt of Colombia, variations in lag time reflect changes in both sediment source areas and exhumation patterns. However, near-zero lag times can be produced by either syndepositional volcanism or rapid exhumation. We applied U-Pb geochronology and (U-Th)/He (ZHe) thermochronology to individual zircon grains and identified zircons of volcanic origin as those for which the U-Pb age is within the 2σ uncertainty of their ZHe age. Consistent discrimination of young ZHe ages as the products of either rapid exhumation or volcanism reveals three stages in the history of the northern Andean hinterland. (1) Early to late Paleocene: The appearance of syndepositional and Mesozoic volcanic zircons marks the initial influx of magmatic arc detritus. (2) Middle to late Eocene: Near-zero lag times point to rapid, regionally extensive exhumation attributable to thrust-induced uplift of the Magdalena Valley basement. (3) Late Eocene to late Oligocene: Increased lag time is interpreted as recycling of shallowly buried foreland-basin strata possibly due to movement on basinbounding thrust systems. The presence of volcanic zircons with ZHe ages younger than or indistinguishable from the youngest exhumationally cooled zircons underscores the need for double dating to reliably identify volcanic influence in detrital thermochronology datasets. These data highlight the utility of double-dated ZHe results for extracting tectonic histories and reliably excluding volcanic zircons from lag-time analysis.

AB - Lag time is the difference between the closure age of a thermochronologic system and the depositional age of host strata. Lag-time analysis of sedimentary basin fill provides insight into the exhumation history of adjacent eroded orogens. In a case study of the Paleogene Floresta basin in the Eastern Cordillera fold-thrust belt of Colombia, variations in lag time reflect changes in both sediment source areas and exhumation patterns. However, near-zero lag times can be produced by either syndepositional volcanism or rapid exhumation. We applied U-Pb geochronology and (U-Th)/He (ZHe) thermochronology to individual zircon grains and identified zircons of volcanic origin as those for which the U-Pb age is within the 2σ uncertainty of their ZHe age. Consistent discrimination of young ZHe ages as the products of either rapid exhumation or volcanism reveals three stages in the history of the northern Andean hinterland. (1) Early to late Paleocene: The appearance of syndepositional and Mesozoic volcanic zircons marks the initial influx of magmatic arc detritus. (2) Middle to late Eocene: Near-zero lag times point to rapid, regionally extensive exhumation attributable to thrust-induced uplift of the Magdalena Valley basement. (3) Late Eocene to late Oligocene: Increased lag time is interpreted as recycling of shallowly buried foreland-basin strata possibly due to movement on basinbounding thrust systems. The presence of volcanic zircons with ZHe ages younger than or indistinguishable from the youngest exhumationally cooled zircons underscores the need for double dating to reliably identify volcanic influence in detrital thermochronology datasets. These data highlight the utility of double-dated ZHe results for extracting tectonic histories and reliably excluding volcanic zircons from lag-time analysis.

UR - http://www.scopus.com/inward/record.url?scp=84861390129&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84861390129&partnerID=8YFLogxK

U2 - 10.1130/B30534.1

DO - 10.1130/B30534.1

M3 - Article

VL - 124

SP - 762

EP - 779

JO - Geological Society of America Bulletin

JF - Geological Society of America Bulletin

SN - 0016-7606

IS - 5-6

ER -