Connecting experiment, theory, and physical intuition in heat transfer with a low-cost solar water heater design project

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Engineering students often struggle with developing physical, tangible understandings of the theories they learn in the classroom. Additionally, they often struggle when faced with messy, non-idealized, real-world systems as opposed to the idealized geometries and assemblies frequently encountered within classrooms and textbooks. As such, they also rarely have the opportunity to learn how experimental design and theoretical modeling work together to understand practical systems. To address these shortcomings, a low-cost solar water heater design project was developed and integrated concurrently between a mechanical engineering heat transfer course and a thermal systems laboratory course. The low-cost constraint reinforced physical understanding of heat transfer concepts and ensured messy, non-ideal designs to which theoretical modeling could not be neatly applied. A heat transfer concept inventory to assess student learning showed minimal gains in student understanding while a self-report attitude survey administered to the students demonstrated that they perceived the design project to be a valuable and enjoyable learning experience. Students failed, however, to understand the complementary nature of experimentation and theoretical modeling. Improved coordination between the two classes was needed to fully realize this benefit, and will be implemented in the future.

Original languageEnglish (US)
JournalASEE Annual Conference and Exposition, Conference Proceedings
StatePublished - 2010

Fingerprint

Solar water heaters
Students
Heat transfer
Costs
Experiments
Textbooks
Mechanical engineering
Design of experiments
Geometry

ASJC Scopus subject areas

  • Engineering(all)

Cite this

@article{786b2dff592d4a17b3157b04cc11d3c4,
title = "Connecting experiment, theory, and physical intuition in heat transfer with a low-cost solar water heater design project",
abstract = "Engineering students often struggle with developing physical, tangible understandings of the theories they learn in the classroom. Additionally, they often struggle when faced with messy, non-idealized, real-world systems as opposed to the idealized geometries and assemblies frequently encountered within classrooms and textbooks. As such, they also rarely have the opportunity to learn how experimental design and theoretical modeling work together to understand practical systems. To address these shortcomings, a low-cost solar water heater design project was developed and integrated concurrently between a mechanical engineering heat transfer course and a thermal systems laboratory course. The low-cost constraint reinforced physical understanding of heat transfer concepts and ensured messy, non-ideal designs to which theoretical modeling could not be neatly applied. A heat transfer concept inventory to assess student learning showed minimal gains in student understanding while a self-report attitude survey administered to the students demonstrated that they perceived the design project to be a valuable and enjoyable learning experience. Students failed, however, to understand the complementary nature of experimentation and theoretical modeling. Improved coordination between the two classes was needed to fully realize this benefit, and will be implemented in the future.",
author = "Nelson, {Brent A} and Constantin Ciocanel",
year = "2010",
language = "English (US)",
journal = "ASEE Annual Conference and Exposition, Conference Proceedings",
issn = "2153-5965",

}

TY - JOUR

T1 - Connecting experiment, theory, and physical intuition in heat transfer with a low-cost solar water heater design project

AU - Nelson, Brent A

AU - Ciocanel, Constantin

PY - 2010

Y1 - 2010

N2 - Engineering students often struggle with developing physical, tangible understandings of the theories they learn in the classroom. Additionally, they often struggle when faced with messy, non-idealized, real-world systems as opposed to the idealized geometries and assemblies frequently encountered within classrooms and textbooks. As such, they also rarely have the opportunity to learn how experimental design and theoretical modeling work together to understand practical systems. To address these shortcomings, a low-cost solar water heater design project was developed and integrated concurrently between a mechanical engineering heat transfer course and a thermal systems laboratory course. The low-cost constraint reinforced physical understanding of heat transfer concepts and ensured messy, non-ideal designs to which theoretical modeling could not be neatly applied. A heat transfer concept inventory to assess student learning showed minimal gains in student understanding while a self-report attitude survey administered to the students demonstrated that they perceived the design project to be a valuable and enjoyable learning experience. Students failed, however, to understand the complementary nature of experimentation and theoretical modeling. Improved coordination between the two classes was needed to fully realize this benefit, and will be implemented in the future.

AB - Engineering students often struggle with developing physical, tangible understandings of the theories they learn in the classroom. Additionally, they often struggle when faced with messy, non-idealized, real-world systems as opposed to the idealized geometries and assemblies frequently encountered within classrooms and textbooks. As such, they also rarely have the opportunity to learn how experimental design and theoretical modeling work together to understand practical systems. To address these shortcomings, a low-cost solar water heater design project was developed and integrated concurrently between a mechanical engineering heat transfer course and a thermal systems laboratory course. The low-cost constraint reinforced physical understanding of heat transfer concepts and ensured messy, non-ideal designs to which theoretical modeling could not be neatly applied. A heat transfer concept inventory to assess student learning showed minimal gains in student understanding while a self-report attitude survey administered to the students demonstrated that they perceived the design project to be a valuable and enjoyable learning experience. Students failed, however, to understand the complementary nature of experimentation and theoretical modeling. Improved coordination between the two classes was needed to fully realize this benefit, and will be implemented in the future.

UR - http://www.scopus.com/inward/record.url?scp=85029116723&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029116723&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85029116723

JO - ASEE Annual Conference and Exposition, Conference Proceedings

JF - ASEE Annual Conference and Exposition, Conference Proceedings

SN - 2153-5965

ER -