Are Kissing Gourami Specialized for Substrate-Feeding? Prey Capture Kinematics of Helostoma temminckii and Other Anabantoid Fishes

Lara A. Ferry, Nicolai Konow, Alice C Gibb

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Helostoma temminckii are known for a "kissing" behavior, which is often used in intraspecific interactions, and an unusual cranial morphology that is characterized by an intramandibular joint (IMJ). The IMJ is located within the lower jaw and aids in generating the eponymous kissing movement. In other teleost linages the IMJ is associated with the adoption of a substrate-grazing foraging habit. However, because of anatomical modifications of the gill-rakers, Helostoma has been considered a midwater filter-feeding species. We offered midwater, benthic, and attached food to Helostoma, Betta, and two "true" osphronemid gouramis, to ask: (1) how do food capture kinematics differ in different foraging contexts; and (2) are Helostoma feeding kinematics distinct when compared with closely related anabantoids that lack an IMJ? For all anabantoid species except Helostoma, benthic prey were captured using a greater contribution of effective suction relative to midwater prey, though Helostoma was rarely willing to feed in the midwater. Helostoma individuals produced relatively less suction than other species regardless of the food type. Helostoma produced a much larger gape and more premaxillary protrusion than other species, but also took longer to do so. We suggest that the jaw morphology of Helostoma facilitates an extremely large mouth-gape to enhance substrate-scraping. The large amplitude mouth-opening that characterizes substrate-feeding may represent a functional trade-off, whereby the enhanced ability to procure food from the substrate is accompanied by a concomitant reduction in the ability to produce suction.

Original languageEnglish (US)
Pages (from-to)571-579
Number of pages9
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume317
Issue number9
DOIs
StatePublished - Nov 2012

Fingerprint

prey capture
kinematics
Biomechanical Phenomena
Suction
Fishes
Joints
suction
substrate
Food
Aptitude
food
fish
Jaw
Mouth
joints (animal)
intraspecific interaction
cranium
filter feeding
teleost
trade-off

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Physiology
  • Molecular Biology

Cite this

@article{a6c6b4e3aa7b486eb813949e152d4813,
title = "Are Kissing Gourami Specialized for Substrate-Feeding? Prey Capture Kinematics of Helostoma temminckii and Other Anabantoid Fishes",
abstract = "Helostoma temminckii are known for a {"}kissing{"} behavior, which is often used in intraspecific interactions, and an unusual cranial morphology that is characterized by an intramandibular joint (IMJ). The IMJ is located within the lower jaw and aids in generating the eponymous kissing movement. In other teleost linages the IMJ is associated with the adoption of a substrate-grazing foraging habit. However, because of anatomical modifications of the gill-rakers, Helostoma has been considered a midwater filter-feeding species. We offered midwater, benthic, and attached food to Helostoma, Betta, and two {"}true{"} osphronemid gouramis, to ask: (1) how do food capture kinematics differ in different foraging contexts; and (2) are Helostoma feeding kinematics distinct when compared with closely related anabantoids that lack an IMJ? For all anabantoid species except Helostoma, benthic prey were captured using a greater contribution of effective suction relative to midwater prey, though Helostoma was rarely willing to feed in the midwater. Helostoma individuals produced relatively less suction than other species regardless of the food type. Helostoma produced a much larger gape and more premaxillary protrusion than other species, but also took longer to do so. We suggest that the jaw morphology of Helostoma facilitates an extremely large mouth-gape to enhance substrate-scraping. The large amplitude mouth-opening that characterizes substrate-feeding may represent a functional trade-off, whereby the enhanced ability to procure food from the substrate is accompanied by a concomitant reduction in the ability to produce suction.",
author = "Ferry, {Lara A.} and Nicolai Konow and Gibb, {Alice C}",
year = "2012",
month = "11",
doi = "10.1002/jez.1749",
language = "English (US)",
volume = "317",
pages = "571--579",
journal = "Journal of Experimental Zoology Part A: Ecological Genetics and Physiology",
issn = "1932-5223",
publisher = "John Wiley and Sons Inc.",
number = "9",

}

TY - JOUR

T1 - Are Kissing Gourami Specialized for Substrate-Feeding? Prey Capture Kinematics of Helostoma temminckii and Other Anabantoid Fishes

AU - Ferry, Lara A.

AU - Konow, Nicolai

AU - Gibb, Alice C

PY - 2012/11

Y1 - 2012/11

N2 - Helostoma temminckii are known for a "kissing" behavior, which is often used in intraspecific interactions, and an unusual cranial morphology that is characterized by an intramandibular joint (IMJ). The IMJ is located within the lower jaw and aids in generating the eponymous kissing movement. In other teleost linages the IMJ is associated with the adoption of a substrate-grazing foraging habit. However, because of anatomical modifications of the gill-rakers, Helostoma has been considered a midwater filter-feeding species. We offered midwater, benthic, and attached food to Helostoma, Betta, and two "true" osphronemid gouramis, to ask: (1) how do food capture kinematics differ in different foraging contexts; and (2) are Helostoma feeding kinematics distinct when compared with closely related anabantoids that lack an IMJ? For all anabantoid species except Helostoma, benthic prey were captured using a greater contribution of effective suction relative to midwater prey, though Helostoma was rarely willing to feed in the midwater. Helostoma individuals produced relatively less suction than other species regardless of the food type. Helostoma produced a much larger gape and more premaxillary protrusion than other species, but also took longer to do so. We suggest that the jaw morphology of Helostoma facilitates an extremely large mouth-gape to enhance substrate-scraping. The large amplitude mouth-opening that characterizes substrate-feeding may represent a functional trade-off, whereby the enhanced ability to procure food from the substrate is accompanied by a concomitant reduction in the ability to produce suction.

AB - Helostoma temminckii are known for a "kissing" behavior, which is often used in intraspecific interactions, and an unusual cranial morphology that is characterized by an intramandibular joint (IMJ). The IMJ is located within the lower jaw and aids in generating the eponymous kissing movement. In other teleost linages the IMJ is associated with the adoption of a substrate-grazing foraging habit. However, because of anatomical modifications of the gill-rakers, Helostoma has been considered a midwater filter-feeding species. We offered midwater, benthic, and attached food to Helostoma, Betta, and two "true" osphronemid gouramis, to ask: (1) how do food capture kinematics differ in different foraging contexts; and (2) are Helostoma feeding kinematics distinct when compared with closely related anabantoids that lack an IMJ? For all anabantoid species except Helostoma, benthic prey were captured using a greater contribution of effective suction relative to midwater prey, though Helostoma was rarely willing to feed in the midwater. Helostoma individuals produced relatively less suction than other species regardless of the food type. Helostoma produced a much larger gape and more premaxillary protrusion than other species, but also took longer to do so. We suggest that the jaw morphology of Helostoma facilitates an extremely large mouth-gape to enhance substrate-scraping. The large amplitude mouth-opening that characterizes substrate-feeding may represent a functional trade-off, whereby the enhanced ability to procure food from the substrate is accompanied by a concomitant reduction in the ability to produce suction.

UR - http://www.scopus.com/inward/record.url?scp=84867399660&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867399660&partnerID=8YFLogxK

U2 - 10.1002/jez.1749

DO - 10.1002/jez.1749

M3 - Article

VL - 317

SP - 571

EP - 579

JO - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

JF - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

SN - 1932-5223

IS - 9

ER -