Analysis of ligand, receptor, and G-protein interaction in the n-formyl peptide receptor of the human neutrophil

S. P. Fay, Richard G Posner, M. D. Domalewski, L. A. Sklar

Research output: Contribution to journalArticle

Abstract

We have used a combination of spectrofluorometric and flow cytometric methods to characterize the interaction of fluorescent formyl peptide ligands with cell surface receptors. Using commercially available fluorescent microbeads as calibration standards, a family of fluoresceinated formyl peptides (N-formyl-met-leu-(phe)n-lys-fluorescein, n = 1-3), and digitoninpermeabilized human neutrophils, we were able to examine both equilibrium and kinetic aspects of ligand binding. Equilibrium studies showed that GTP[S] caused a loss of binding affinity of approximately two orders of magnitude, from approximately 0.04 nM (LRG) to -3 nM (LR), resp. Kinetic studies revealed that this change in affinity was due to principally an increase in the dissociation rate constant from -1 × 10-3 sec-1 (LRG) to approximately 1 × 10-1 sec-1 (LR). In contrast the association rate constants in the presence and absence of guanine nuclcotide (-3 × 107 sec-1 M-1) were statistically indistinguishable, and close to the diffusion limit. In the presence of guanine nuclocotide (LR), the kinetic data were adequately fit by a single step reversible model. However, in the absence of guanine nucleotide, while a large fraction of the receptors has essentially instantaneous access to G proteins, a substantial fraction is initially uncoupled from G proteins and only has access to them over a period of minutes. The binding data are consistent with the idea that those receptors with rapid access to the G proteins may be physically pre-coupled to the receptors in permeabilized neutrophil preparations even in the absence of the peptide ligand. Quenching of the fluorescein of the shorter peptides (n = 1-2) upon binding suggests that the pocket is large enough to contain at least five, but no more than six amino acids, while pH-dependent intensity measurements suggest that the mechanism of quenching is dependent upon the position of fluorescein within the pocket.

Original languageEnglish (US)
Pages (from-to)602
Number of pages1
JournalAnnals of Biomedical Engineering
Volume19
Issue number5
StatePublished - 1991
Externally publishedYes

Fingerprint

Peptides
Ligands
Proteins
Kinetics
Quenching
Rate constants
Nucleotides
Amino acids
Association reactions
Calibration

ASJC Scopus subject areas

  • Biomedical Engineering

Cite this

Analysis of ligand, receptor, and G-protein interaction in the n-formyl peptide receptor of the human neutrophil. / Fay, S. P.; Posner, Richard G; Domalewski, M. D.; Sklar, L. A.

In: Annals of Biomedical Engineering, Vol. 19, No. 5, 1991, p. 602.

Research output: Contribution to journalArticle

@article{37e260b0c9d0423d972c253876a83487,
title = "Analysis of ligand, receptor, and G-protein interaction in the n-formyl peptide receptor of the human neutrophil",
abstract = "We have used a combination of spectrofluorometric and flow cytometric methods to characterize the interaction of fluorescent formyl peptide ligands with cell surface receptors. Using commercially available fluorescent microbeads as calibration standards, a family of fluoresceinated formyl peptides (N-formyl-met-leu-(phe)n-lys-fluorescein, n = 1-3), and digitoninpermeabilized human neutrophils, we were able to examine both equilibrium and kinetic aspects of ligand binding. Equilibrium studies showed that GTP[S] caused a loss of binding affinity of approximately two orders of magnitude, from approximately 0.04 nM (LRG) to -3 nM (LR), resp. Kinetic studies revealed that this change in affinity was due to principally an increase in the dissociation rate constant from -1 × 10-3 sec-1 (LRG) to approximately 1 × 10-1 sec-1 (LR). In contrast the association rate constants in the presence and absence of guanine nuclcotide (-3 × 107 sec-1 M-1) were statistically indistinguishable, and close to the diffusion limit. In the presence of guanine nuclocotide (LR), the kinetic data were adequately fit by a single step reversible model. However, in the absence of guanine nucleotide, while a large fraction of the receptors has essentially instantaneous access to G proteins, a substantial fraction is initially uncoupled from G proteins and only has access to them over a period of minutes. The binding data are consistent with the idea that those receptors with rapid access to the G proteins may be physically pre-coupled to the receptors in permeabilized neutrophil preparations even in the absence of the peptide ligand. Quenching of the fluorescein of the shorter peptides (n = 1-2) upon binding suggests that the pocket is large enough to contain at least five, but no more than six amino acids, while pH-dependent intensity measurements suggest that the mechanism of quenching is dependent upon the position of fluorescein within the pocket.",
author = "Fay, {S. P.} and Posner, {Richard G} and Domalewski, {M. D.} and Sklar, {L. A.}",
year = "1991",
language = "English (US)",
volume = "19",
pages = "602",
journal = "Annals of Biomedical Engineering",
issn = "0090-6964",
publisher = "Springer Netherlands",
number = "5",

}

TY - JOUR

T1 - Analysis of ligand, receptor, and G-protein interaction in the n-formyl peptide receptor of the human neutrophil

AU - Fay, S. P.

AU - Posner, Richard G

AU - Domalewski, M. D.

AU - Sklar, L. A.

PY - 1991

Y1 - 1991

N2 - We have used a combination of spectrofluorometric and flow cytometric methods to characterize the interaction of fluorescent formyl peptide ligands with cell surface receptors. Using commercially available fluorescent microbeads as calibration standards, a family of fluoresceinated formyl peptides (N-formyl-met-leu-(phe)n-lys-fluorescein, n = 1-3), and digitoninpermeabilized human neutrophils, we were able to examine both equilibrium and kinetic aspects of ligand binding. Equilibrium studies showed that GTP[S] caused a loss of binding affinity of approximately two orders of magnitude, from approximately 0.04 nM (LRG) to -3 nM (LR), resp. Kinetic studies revealed that this change in affinity was due to principally an increase in the dissociation rate constant from -1 × 10-3 sec-1 (LRG) to approximately 1 × 10-1 sec-1 (LR). In contrast the association rate constants in the presence and absence of guanine nuclcotide (-3 × 107 sec-1 M-1) were statistically indistinguishable, and close to the diffusion limit. In the presence of guanine nuclocotide (LR), the kinetic data were adequately fit by a single step reversible model. However, in the absence of guanine nucleotide, while a large fraction of the receptors has essentially instantaneous access to G proteins, a substantial fraction is initially uncoupled from G proteins and only has access to them over a period of minutes. The binding data are consistent with the idea that those receptors with rapid access to the G proteins may be physically pre-coupled to the receptors in permeabilized neutrophil preparations even in the absence of the peptide ligand. Quenching of the fluorescein of the shorter peptides (n = 1-2) upon binding suggests that the pocket is large enough to contain at least five, but no more than six amino acids, while pH-dependent intensity measurements suggest that the mechanism of quenching is dependent upon the position of fluorescein within the pocket.

AB - We have used a combination of spectrofluorometric and flow cytometric methods to characterize the interaction of fluorescent formyl peptide ligands with cell surface receptors. Using commercially available fluorescent microbeads as calibration standards, a family of fluoresceinated formyl peptides (N-formyl-met-leu-(phe)n-lys-fluorescein, n = 1-3), and digitoninpermeabilized human neutrophils, we were able to examine both equilibrium and kinetic aspects of ligand binding. Equilibrium studies showed that GTP[S] caused a loss of binding affinity of approximately two orders of magnitude, from approximately 0.04 nM (LRG) to -3 nM (LR), resp. Kinetic studies revealed that this change in affinity was due to principally an increase in the dissociation rate constant from -1 × 10-3 sec-1 (LRG) to approximately 1 × 10-1 sec-1 (LR). In contrast the association rate constants in the presence and absence of guanine nuclcotide (-3 × 107 sec-1 M-1) were statistically indistinguishable, and close to the diffusion limit. In the presence of guanine nuclocotide (LR), the kinetic data were adequately fit by a single step reversible model. However, in the absence of guanine nucleotide, while a large fraction of the receptors has essentially instantaneous access to G proteins, a substantial fraction is initially uncoupled from G proteins and only has access to them over a period of minutes. The binding data are consistent with the idea that those receptors with rapid access to the G proteins may be physically pre-coupled to the receptors in permeabilized neutrophil preparations even in the absence of the peptide ligand. Quenching of the fluorescein of the shorter peptides (n = 1-2) upon binding suggests that the pocket is large enough to contain at least five, but no more than six amino acids, while pH-dependent intensity measurements suggest that the mechanism of quenching is dependent upon the position of fluorescein within the pocket.

UR - http://www.scopus.com/inward/record.url?scp=0026397450&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026397450&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0026397450

VL - 19

SP - 602

JO - Annals of Biomedical Engineering

JF - Annals of Biomedical Engineering

SN - 0090-6964

IS - 5

ER -