A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Henry D. Adams, Melanie J.B. Zeppel, William R.L. Anderegg, Henrik Hartmann, Simon M. Landhäusser, David T. Tissue, Travis E. Huxman, Patrick J. Hudson, Trenton E. Franz, Craig D. Allen, Leander D.L. Anderegg, Greg A. Barron-Gafford, David J. Beerling, David D. Breshears, Timothy J. Brodribb, Harald Bugmann, Richard C. Cobb, Adam D. Collins, L. Turin Dickman, Honglang DuanBrent E. Ewers, Lucía Galiano, David A. Galvez, Núria Garcia-Forner, Monica L. Gaylord, Matthew J. Germino, Arthur Gessler, Uwe G. Hacke, Rodrigo Hakamada, Andy Hector, Michael W. Jenkins, Jeffrey M. Kane, Thomas E. Kolb, Darin J. Law, James D. Lewis, Jean Marc Limousin, David M. Love, Alison K. Macalady, Jordi Martínez-Vilalta, Maurizio Mencuccini, Patrick J. Mitchell, Jordan D. Muss, Michael J. O'Brien, Anthony P. O'Grady, Robert E. Pangle, Elizabeth A. Pinkard, Frida I. Piper, Jennifer A. Plaut, William T. Pockman, Joe Quirk, Keith Reinhardt, Francesco Ripullone, Michael G. Ryan, Anna Sala, Sanna Sevanto, John S. Sperry, Rodrigo Vargas, Michel Vennetier, Danielle A. Way, Chonggang Xu, Enrico A. Yepez, Nate G. McDowell

Research output: Contribution to journalArticle

246 Scopus citations

Abstract

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

Original languageEnglish (US)
Pages (from-to)1285-1291
Number of pages7
JournalNature Ecology and Evolution
Volume1
Issue number9
DOIs
StatePublished - Sep 1 2017

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint Dive into the research topics of 'A multi-species synthesis of physiological mechanisms in drought-induced tree mortality'. Together they form a unique fingerprint.

  • Cite this

    Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz, T. E., Allen, C. D., Anderegg, L. D. L., Barron-Gafford, G. A., Beerling, D. J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, R. C., Collins, A. D., Dickman, L. T., ... McDowell, N. G. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1(9), 1285-1291. https://doi.org/10.1038/s41559-017-0248-x