A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens

Jason W. Sahl, Talima R Pearson, Richard Okinaka, James M. Schupp, John D. Gillece, Hannah Heaton, Dawn Birdsell, Crystal Hepp, Viacheslav Fofanov, Ramón Noseda, Antonio Fasanella, Alex Hoffmaster, David M Wagner, Paul S Keim

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both statesponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. IMPORTANCE The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.

Original languageEnglish (US)
Article numbere01501-16
JournalmBio
Volume7
Issue number5
DOIs
StatePublished - Sep 1 2016

Fingerprint

Bacillus anthracis
Anthrax
Autopsy
Genome
Disease Outbreaks
Spores
Biological Warfare Agents
Single Nucleotide Polymorphism
Vaccines
Occupational Accidents
Genetic Databases
High-Throughput Nucleotide Sequencing
Wild Animals
Weapons
Genetic Engineering
Antibiotic Prophylaxis
USSR
Russia
Domestic Animals
Zoonoses

ASJC Scopus subject areas

  • Microbiology
  • Virology

Cite this

A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. / Sahl, Jason W.; Pearson, Talima R; Okinaka, Richard; Schupp, James M.; Gillece, John D.; Heaton, Hannah; Birdsell, Dawn; Hepp, Crystal; Fofanov, Viacheslav; Noseda, Ramón; Fasanella, Antonio; Hoffmaster, Alex; Wagner, David M; Keim, Paul S.

In: mBio, Vol. 7, No. 5, e01501-16, 01.09.2016.

Research output: Contribution to journalArticle

Sahl, JW, Pearson, TR, Okinaka, R, Schupp, JM, Gillece, JD, Heaton, H, Birdsell, D, Hepp, C, Fofanov, V, Noseda, R, Fasanella, A, Hoffmaster, A, Wagner, DM & Keim, PS 2016, 'A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens', mBio, vol. 7, no. 5, e01501-16. https://doi.org/10.1128/mBio.01501-16
Sahl JW, Pearson TR, Okinaka R, Schupp JM, Gillece JD, Heaton H et al. A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. mBio. 2016 Sep 1;7(5). e01501-16. https://doi.org/10.1128/mBio.01501-16
Sahl, Jason W. ; Pearson, Talima R ; Okinaka, Richard ; Schupp, James M. ; Gillece, John D. ; Heaton, Hannah ; Birdsell, Dawn ; Hepp, Crystal ; Fofanov, Viacheslav ; Noseda, Ramón ; Fasanella, Antonio ; Hoffmaster, Alex ; Wagner, David M ; Keim, Paul S. / A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. In: mBio. 2016 ; Vol. 7, No. 5.
@article{4a944ec2378147798336e0c89f038642,
title = "A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens",
abstract = "Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both statesponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. IMPORTANCE The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.",
author = "Sahl, {Jason W.} and Pearson, {Talima R} and Richard Okinaka and Schupp, {James M.} and Gillece, {John D.} and Hannah Heaton and Dawn Birdsell and Crystal Hepp and Viacheslav Fofanov and Ram{\'o}n Noseda and Antonio Fasanella and Alex Hoffmaster and Wagner, {David M} and Keim, {Paul S}",
year = "2016",
month = "9",
day = "1",
doi = "10.1128/mBio.01501-16",
language = "English (US)",
volume = "7",
journal = "mBio",
issn = "2161-2129",
publisher = "American Society for Microbiology",
number = "5",

}

TY - JOUR

T1 - A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens

AU - Sahl, Jason W.

AU - Pearson, Talima R

AU - Okinaka, Richard

AU - Schupp, James M.

AU - Gillece, John D.

AU - Heaton, Hannah

AU - Birdsell, Dawn

AU - Hepp, Crystal

AU - Fofanov, Viacheslav

AU - Noseda, Ramón

AU - Fasanella, Antonio

AU - Hoffmaster, Alex

AU - Wagner, David M

AU - Keim, Paul S

PY - 2016/9/1

Y1 - 2016/9/1

N2 - Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both statesponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. IMPORTANCE The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.

AB - Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both statesponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. IMPORTANCE The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.

UR - http://www.scopus.com/inward/record.url?scp=84994469016&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84994469016&partnerID=8YFLogxK

U2 - 10.1128/mBio.01501-16

DO - 10.1128/mBio.01501-16

M3 - Article

VL - 7

JO - mBio

JF - mBio

SN - 2161-2129

IS - 5

M1 - e01501-16

ER -