Research Output per year

## Fingerprint Dive into the research topics where Michael J Falk is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Arrangement
Mathematics

Complement
Mathematics

Hyperplane
Mathematics

Matroid
Mathematics

Arrangement of Hyperplanes
Mathematics

Algebra
Mathematics

Pencil of planes
Mathematics

Cohomology
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 1985 2018

## Noncrossing partitions and milnor fibers

Brady, T., Falk, M. J. & Watt, C., Dec 11 2018, In : Algebraic and Geometric Topology. 18, 7, p. 3821-3838 18 p.Research output: Contribution to journal › Article

Milnor Fiber

Noncrossing Partitions

Cell Complex

Shellability

Reflection Group

## An equivariant discrete model for complexified arrangement complements

Delucchi, E. & Falk, M. J., 2017, In : Proceedings of the American Mathematical Society. 145, 3, p. 955-970 16 p.Research output: Contribution to journal › Article

Discrete Model

Equivariant

Oriented Matroid

Arrangement

Complement

1
Citation
(Scopus)

## BGG resolutions via configuration spaces

Falk, M., Schechtman, V. & Varchenko, A., Jan 1 2014, In : Journal de l'Ecole Polytechnique - Mathematiques. 1, p. 225-245 21 p.Research output: Contribution to journal › Article

Configuration Space

Logarithmic

Intersection Cohomology

Flat Connection

Singularity

## Pure braid groups are not residually free

Cohen, D. C., Falk, M. J. & Randell, R., Jan 1 2012,*Configuration Spaces: Geometry, Combinatorics and Topology.*Scuola Normale Superiore, p. 213-230 18 p.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

Braid Group

## The contravariant form on singular vectors of a projective arrangement

Falk, M. J. & Varchenko, A. N., Jan 1 2012,*Configuration Spaces: Geometry, Combinatorics and Topology.*Scuola Normale Superiore, p. 255-272 18 p.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

Singular Vectors

Arrangement

Hyperplane

Bilinear form

Projective Space